• Title/Summary/Keyword: 수송파

Search Result 42, Processing Time 0.037 seconds

Aerodynamic Characteristics of a Tube Train (튜브 트레인 공력특성 해석)

  • Kim, Tae-Kyung;Kim, Kyu-Hong;Kwon, Hyeok-Bin
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.139-150
    • /
    • 2010
  • Recently, full-scale research about a passenger tube train system is being progressed as a next-generation transportation system in Korea in light of global green technology. The Korea Railroad Research Institute (KRRI) has commenced official research on the construction of a tube train system. In this paper, we studied various parameters of the tube train system such as the internal tube pressure, blockage ratio, and operating speed through computational analysis with a symmetric and elongated vehicle. This study was about the aerodynamic characteristics of a tube train that operated under standard atmospheric pressure (open field system, viz., ground) and in various internal tube environments (varying internal tube pressure, blockage ratio, and operating speed) with the same shape and operating speed. Under these conditions, the internal tube pressure was calculated when the energy efficiency had the same value as that of the open field train depending on various combinations of the operating speed and blockage ratio (the P-D relation). In addition, the dependence of the relation between the internal tube pressure and the blockage ratio (the P-${\beta}$ relation) was shown. Besides, the dependence of the relation between the total drag and the operating speed depending on various combinations of the blockage ratio and internal tube pressure (the D-V relation) was shown. Also, we compared the total (aerodynamic) drag of a train in the open field with the total drag of a train inside a tube. Then, we calculated the limit speed of the tube train, i.e., the maximum speed, for various internal tube pressures (the V-P relation) and the critical speed that leads to shock waves under various blockage ratios, which is related to the efficiency of the tube train (the critical V-${\beta}$ relation). Those results provide guidelines for the initial design and construction of a tube train system.

  • PDF

A Study on the Cost Estimation Model in the military logistics- Focus on the military clothing (국방 물류비용 추정 모델에 관한 연구 - 육군 피복류 중심으로 -)

  • Park, Jin-Woo;Kang, Sung-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.32 no.2
    • /
    • pp.1-20
    • /
    • 2006
  • In modern marketing environment, we are more interested in logistics as industrial structure is complicated and globalized. Most companies focus on reducing the cost price. So a lot of companies study on cost estimation logistics. However, it Is very difficult to estimate the cost of logistics. Thus they mainly use linear method such as the simple distance of transportation. This study defines the cost of logistics, structure & network of military logistics and proposes the costing estimation model in the logistics. We apply to battle shoes which are the main clothing in the military. In the result, we found some differences on the rate of cost structure between military and civil companies. This study can be used directly to the decision making for optimal military logistics alternatives and contribute to the efficient operation of military budget.

Modeling Study on Nuclide Transport in Ocean - an Ocean Compartment Model (해양에서의 핵종이동 모델링 - 해양구획 모델)

  • Lee, Youn-Myoung;Suh, Kyung-Suk;Han, Kyong-Won
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.387-400
    • /
    • 1991
  • An ocean compartment model simulating transport of nuclides by advection due to ocean circulation and intertaction with suspended sediments is developed, by which concentration breakthrough curves of nuclides can be calculated as a function of time. Dividing ocean into arbitrary number of characteristic compartments and performing a balance of mass of nuclides in each ocean compartment, the governing equation for the concentration in the ocean is obtained and a solution by the numerical integration is obtained. The integration method is specially useful for general stiff systems. For transfer coefficients describing advective transport between adjacent compartments by ocean circulation, the ocean turnover time is calculated by a two-dimensional numerical ocean model. To exemplify the compartment model, a reference case calculation for breakthrough curves of three nuclides in low-level radioactive wastes, Tc-99, Cs-137, and Pu-238 released from hypothetical repository under the seabed is carried out with five ocean compartments. Sensitivity analysis studies for some parameters to the concentration breakthrough curves are also made, which indicates that parameters such as ocean turnover time and ocean water volume of compartments have an important effect on the breakthrough curves.

  • PDF

Ocean Wave Forecasting and Hindercasting Method to Support for Navigational Safety of Ship (선박의 항행안전지원을 위한 파랑추산에 관한 연구)

  • Shin, Seung-Ho;Hashimoto, Noriaki
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.111-119
    • /
    • 2003
  • In order to improve navigational safety of ships, an ocean wave prediction model of high precision within a short time, dealing with multi-directional random waves from the information of the sea surface winds encountered at the planned ship's course, was introduced for construction of ocean wave forecasting system on the ship. In this paper, we investigated a sea disaster occurred by a stormy weather in the past. We analyzed the sea surface wind first and then carried out ocean wave hindercasting simulations according to the routes the sunken vessel. From the result of this study, we concluded that the sea disaster was caused by rapidly developed iou pressure system Okhotsk Sea and the predicted values by the third generation wave prediction model(WAM) was agreed well with the observed significant wave height, wave period, and directional wave spectrum. It gives a good applicability for construction of a practical on-board calculation system.

Compensation of Voltage Drop Using the TSC-SVC in Electric Railway Power Supply System (전기철도 AT 급전시스템에서의 TSC-SVC를 이용한 전압강하 보상)

  • 정현수;방성원;김진오
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.29-36
    • /
    • 2002
  • Recently, power quality problems in AC high-Speed Railway system have been raised, because heavy train and its higher speed are required in addition to new control system by using the Electronic devices. The installation/operation of the Series Capacitor(SC) has been only a device far voltage drop in power system up to now. However, the sufficient effectiveness of compensating In voltage drop has not been proved yet because of technical limitationf SC, and harmonic resonance is attracting a attention as one of new issues. Several problems are expected such as vocational problems of a traction substation, and overloading caused by a new construction of electric railway and the in transport. Therefore, extension of power feeding the fault in the traction substation should be also considered. So this paper represents the application of TSC-SVC on the electric railway power feeding system as a device of voltage compensation, and the simulations are executed through PSCAD/EMTDC.

An Estimation of Concentration of Asian Dust (PM10) Using WRF-SMOKE-CMAQ (MADRID) During Springtime in the Korean Peninsula (WRF-SMOKE-CMAQ(MADRID)을 이용한 한반도 봄철 황사(PM10)의 농도 추정)

  • Moon, Yun-Seob;Lim, Yun-Kyu;Lee, Kang-Yeol
    • Journal of the Korean earth science society
    • /
    • v.32 no.3
    • /
    • pp.276-293
    • /
    • 2011
  • In this study a modeling system consisting of Weather Research and Forecasting (WRF), Sparse Matrix Operator Kernel Emissions (SMOKE), the Community Multiscale Air Quality (CMAQ) model, and the CMAQ-Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) model has been applied to estimate enhancements of $PM_{10}$ during Asian dust events in Korea. In particular, 5 experimental formulas were applied to the WRF-SMOKE-CMAQ (MADRID) model to estimate Asian dust emissions from source locations for major Asian dust events in China and Mongolia: the US Environmental Protection Agency (EPA) model, the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model, and the Dust Entrainment and Deposition (DEAD) model, as well as formulas by Park and In (2003), and Wang et al. (2000). According to the weather map, backward trajectory and satellite image analyses, Asian dust is generated by a strong downwind associated with the upper trough from a stagnation wave due to development of the upper jet stream, and transport of Asian dust to Korea shows up behind a surface front related to the cut-off low (known as comma type cloud) in satellite images. In the WRF-SMOKE-CMAQ modeling to estimate the PM10 concentration, Wang et al.'s experimental formula was depicted well in the temporal and spatial distribution of Asian dusts, and the GOCART model was low in mean bias errors and root mean square errors. Also, in the vertical profile analysis of Asian dusts using Wang et al's experimental formula, strong Asian dust with a concentration of more than $800\;{\mu}g/m^3$ for the period of March 31 to April 1, 2007 was transported under the boundary layer (about 1 km high), and weak Asian dust with a concentration of less than $400\;{\mu}g/m^3$ for the period of 16-17 March 2009 was transported above the boundary layer (about 1-3 km high). Furthermore, the difference between the CMAQ model and the CMAQ-MADRID model for the period of March 31 to April 1, 2007, in terms of PM10 concentration, was seen to be large in the East Asia area: the CMAQ-MADRID model showed the concentration to be about $25\;{\mu}g/m^3$ higher than the CMAQ model. In addition, the $PM_{10}$ concentration removed by the cloud liquid phase mechanism within the CMAQ-MADRID model was shown in the maximum $15\;{\mu}g/m^3$ in the Eastern Asia area.

Radiation, Energy, and Entropy Exchange in an Irrigated-Maize Agroecosystem in Nebraska, USA (미국 네브라스카의 관개된 옥수수 농업생태계의 복사, 에너지 및 엔트로피의 교환)

  • Yang, Hyunyoung;Indriwati, Yohana Maria;Suyker, Andrew E.;Lee, Jihye;Lee, Kyung-do;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.1
    • /
    • pp.26-46
    • /
    • 2020
  • An irrigated-maize agroecosystem is viewed as an open thermodynamic system upon which solar radiation impresses a large gradient that moves the system away from equilibrium. Following the imperative of the second law of thermodynamics, such agroecosystem resists and reduces the externally applied gradient by using all means of this nature-human coupled system acting together as a nonequilibrium dissipative process. The ultimate purpose of our study is to test this hypothesis by examining the energetics of agroecosystem growth and development. As a first step toward this test, we employed the eddy covariance flux data from 2003 to 2014 at the AmeriFlux NE1 irrigated-maize site at Mead, Nebraska, USA, and analyzed the energetics of this agroecosystem by scrutinizing its radiation, energy and entropy exchange. Our results showed: (1) more energy capture during growing season than non-growing season, and increasing energy capture through growing season until senescence; (2) more energy flow activity within and through the system, providing greater potential for degradation; (3) higher efficiency in terms of carbon uptake and water use through growing season until senescence; and (4) the resulting energy degradation occurred at the expense of increasing net entropy accumulation within the system as well as net entropy transfer out to the surrounding environment. Under the drought conditions in 2012, the increased entropy production within the system was accompanied by the enhanced entropy transfer out of the system, resulting in insignificant net entropy change. Drought mitigation with more frequent irrigation shifted the main route of entropy transfer from sensible to latent heat fluxes, yielding the production and carbon uptake exceeding the 12-year mean values at the cost of less efficient use of water and light.

Compensation of Instantaneous Voltage Drop at AC Railroad System with Single-Phase Distributed STATCOM (전기철도 급전시스템의 순시전압강하 보상을 위한 단상 배전 STATCOM의 적용)

  • Kim, Jun-Sang;Lee, Seung-Hyuk;Kim, Jin-O;Lee, Jun-Kyung;Jung, Hyun-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.42-51
    • /
    • 2007
  • An AC electrical railroad system has rapidly changing dynamic single-phase load, and at a feeding substation, three-phase electric power is transformed to the paired directional single-phase electric power. There is a great difference in electrical phenomenon between the load of AC electrical railroad system and that of general power system. Electric characteristics of AC electrical railroad's trainload are changed continuously according to the traction, operating characteristic, operating schedule, track slope, etc. Because of the long feeding distance of the dynamic trainload, power quality problems such as voltage drop, voltage imbalance and harmonic distortion my also occur to AC electrical railroad system. These problems affect not only power system stability, but also power quality deterioration in AC electrical railroad system. The dynamic simulation model of AC electrical railroad system presented by PSCAD/EMTDC is modeled in this paper, andthen, it is analyzed voltage drop for AC electrical railroad system both with single-phase distributed STATCOM(Static Synchronous Compensator) installed at SP(Sectioning Post) and without.

Numerical Analysis of Dynamic Response of Floating Offshore Wind Turbine to the Underwater Explosion using the PML Non-reflecting Technique (PML 무반사 기법을 이용한 부유식 해상풍력발전기의 수중폭발에 따른 동응답 수치해석)

  • Cho, Jin-Rae;Jeon, Soo-Hong;Jeong, Weui-Bong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.521-527
    • /
    • 2016
  • This paper is concerned with the numerical analysis of dynamic response of floating offshore wind turbine subject to underwater explosion using an effective non-reflecting technique. An infinite sea water domain was truncated into a finite domain, and the non-reflecting technique called the perfectly matched layer(PML) was applied to the boundary of truncated finite domain to absorb the inherent reflection of out-going impact wave at the boundary. The generalized transport equations that govern the inviscid compressible water flow was split into three PML equations by introducing the direction-wise absorption coefficients and state variables. The fluid-structure interaction problem that is composed of the wind turbine and the sea water flow was solved by the iterative coupled Eulerian FVM and Largangian FEM. And, the explosion-induced hydrodynamic pressure was calculated by JWL(Jones-Wilkins-Lee) equation of state. Through the numerical experiment, the hydrodynamic pressure and the structural dynamic response were investigated. It has been confirmed that the case using PML technique provides more reliable numerical results than the case without using PML technique.

Dynamic Numerical Modeling of Subsea Railway Tunnel Based on Geotechnical Conditions and Seismic Waves (지반조건과 지진파를 고려한 해저철도 터널의 동적 수치 모델링)

  • Kwak, Chang-Won;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.69-86
    • /
    • 2022
  • The railway is widely used to transport passengers and freight due to its punctuality and large transport capacity. The recent remarkable development in construction technology enables various subsea railway tunnels for continent-continent or continent-island connectivity. In Korea, design and construction experience is primarily based on the successful completion of the Boryeong subsea tunnel (2021) and the Gadeok subsea tunnel (2010). However, frequent earthquakes with diverse magnitudes, globally induced and continuously increased the awareness of seismic risks and the frequency of domestic earthquakes. The effect of an earthquake on the subsea tunnel is very complicated. However, ground conditions and seismic waves are considered the main factors. This study simulated four ground types of 3-dimensional numerical models, such as soil, rock, composite, and fractured zone, to analyze the effect of ground type and seismic wave. A virtual subsea railway shield tunnel considering external water pressure was modeled. Further, three different seismic waves with long-term, short-term, and both periods were studied. The dynamic analyses by finite difference method were performed to investigate the displacement and stress characteristics. Consequently, the long-term period wave exhibited a predominant lateral displacement response in soil and the short-term period wave in rock. The artificial wave, which had both periodic characteristics, demonstrated predominant in the fractured zone. The effect of an earthquake is more noticeable in the stress of the tunnel segment than in displacement because of confining effect of ground and structural elements in the shield tunnel.