• 제목/요약/키워드: 수소화-탈수소화

검색결과 25건 처리시간 0.021초

수소화-탈수소화법을 이용한 탄탈륨 스크랩으로부터 탄탈륨 분말 제조 연구 (Study on Manufacture of Tantalum Powder from Tantalum Scrap using Hydride-Dehydride Process (HDH Process))

  • 이지은;이찬기;박지환;윤진호
    • 자원리싸이클링
    • /
    • 제27권5호
    • /
    • pp.30-37
    • /
    • 2018
  • 국내 발생하는 고순도 탄탈륨 스크랩을 재활용하기 위해 수소화-탈수소화법(HDH법)에 의한 탄탈륨 분말 제조 연구를 실시하였다. 탄탈륨은 연성 및 강도가 우수하며 융점 또한 높아 분말 제조가 어려운 금속으로 알려져 있다. 따라서 본 연구에서는 수소화를 통해 생성된 탄탈륨 수소화물을 이용하여 탄탈륨 분말을 제조하였다. $500^{\circ}C$, 5시간/$700^{\circ}C$, 3시간 수소화 조건에서 탄탈륨 수소화물이 생성되었고, 탄탈륨 내의 수소는 격자의 팽창 및 전위의 결함으로 작용하므로 탄탈륨 수소화물 분말을 제조하기에 용이하였다. Ring mill을 이용하여 1300 rpm, 30분 이상의 조건에서 $10{\mu}m$ 이하의 크기로 분쇄하였으며, 알곤 및 저진공 분위기에서 탈수소화 공정을 통해 수소 50 ppm 이하의 탄탈륨 분말을 제조하였다.

Fischer-Tropsch 왁스로부터 항공유제조를 위한 촉매연구동향 (Researches Trend to Produce Jet-fuel from Fischer-Tropsch Wax)

  • 박은덕;박명준;김윤하;김명엽;정순용;한정식;정병훈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.793-794
    • /
    • 2010
  • 피셔트롭스반응은 합성가스 ($H_2+CO$) 로부터 액체연료를 생산하기 위한 목적으로 연구되고 있으며 최근 한정된 석유자원으로 인하여 그 중요성이 증대하고 있다. 이 반응을 통해 생산된 왁스는 수첨분해 반응을 통해 원하는 액체연료 (디젤, 항공유, 윤활유 등) 영역의 수율을 높일 수 있다. 수첨분해반응을 위해선 수소화/탈수소화 기능을 가지는 금속을 포함하고 크래킹 반응을 일으키는 산점을 가지는 양기능성 촉매가 선호된다. 본 연구에서는 수소첨가분해 반응에 이용하는 일반적인 촉매를 알아보고 왁스종류, 반응온도, 반응압력 등 공정변수에 따라 사용가능한 촉매를 조사, 비교하였다.

  • PDF

폐플라스틱 분해를 위한 알칸 교차 복분해 반응 (Cross Alkane Metathesis Reaction for Waste Plastic Degradation)

  • 김주은;안광진
    • 공업화학전망
    • /
    • 제24권2호
    • /
    • pp.22-30
    • /
    • 2021
  • 현재 인류는 플라스틱(plastic) 세상에 살고 있다. 의류, 식품, 주거 생활 곳곳에 플라스틱이 존재하며, 플라스틱이 없는 세상은 상상조차 할 수 없다. 하지만, 플라스틱 사용량 증가에 따른 폐플라스틱의 배출량의 증가는 심각한 환경문제들을 야기하여 생태계뿐만 아니라 인간에게도 위협이 되고 있다. 이를 해결하기 위한 방법으로 단순히 폐플라스틱의 처리에 그치지 않고, 이를 활용하여 새로운 고부가가치의 생성물을 제조하는 플라스틱 업사이클링(plastic upcycling) 시스템이 최근 주목을 받고 있으며, 현재 다양한 형태로 연구개발이 진행되고 있다. 그 중의 한가지로 본 기고문에서는 알칸 교차 복분해(cross alkane metathesis) 반응을 소개한다. 알칸 교차 복분해 반응은 수소화/탈수소화(hydrogenation/dehydrogenation) 반응과 올레핀 복분해(olefin metathesis) 반응으로 이루어져, 탈수소화 반응 후 생성된 이중결합 탄소를 갖는 두 개의 알켄 화합물이 자리바꿈을 통해 새로운 이중 결합을 형성하는 반응이다. 이 촉매반응 과정이 반복되면 저분자화된 새로운 알칸 화합물을 생성되는데, 이는 기존의 플라스틱 처리방식인 열분해 및 촉매 분해 공정보다 낮은 반응온도를 요구한다. 또한 이를 통해 상대적으로 높은 순도의 가솔린 및 디젤을 생성할 수 있기 때문에 폐플라스틱 처리 공정의 새로운 대안기술이 될 수 있다. 본 기고문에서 폐플라스틱 중 가장 큰 비중을 차지하는 폴리에틸렌을 처리하는 대안기술로써 알칸 교차 복분해 반응의 메커니즘과 및 촉매의 역할, 그리고 반응성에 영향을 주는 인자에 대해 기술한다.

BiFe0.65MoP0.1 촉매 상에서 1-부텐의 산화탈수소화 반응 : 인 전구체의 영향 (Oxidative Dehydrogenation of 1-butene over BiFe0.65MoP0.1 Catalyst: Effect of Phosphorous Precursors)

  • 박정현;윤현기;신채호
    • Korean Chemical Engineering Research
    • /
    • 제53권6호
    • /
    • pp.824-830
    • /
    • 2015
  • 1-부텐의 산화탈수소화에서 다양한 인 전구체가 촉매의 반응활성에 미치는 영향을 조사하기 위하여 $BiFe_{0.65}MoP_{0.1}$ 산화물 촉매를 모델 촉매로 선정하여 인산수소암모늄, 인산수소이암모늄, 인산, 트리에틸인산, 오산화인 등의 인 전구체를 사용하어 촉매를 제조하고 산화탈수소화 반응을 수행하였다. 제조한 촉매의 물리 화학적 특성을 알아보기 위하여 X-선 회절분석(XRD), 질소 흡착 탈착분석($N_2$ sorption), 원소분석(ICP), 전자주사현미경(SEM), 승온재산화분석(TPRD) 등의 특성분석을 수행하였다. 제조한 촉매의 물리적 특성은 인 전구체에 따른 큰 차이는 관찰되지 않았지만 산화탈수소화 반응에서 촉매의 활성은 사용된 인 전구체의 특성에 따라 다르게 관찰되었다. 인산을 전구체로 사용하여 제조한 $BiFe_{0.65}MoP_{0.1}$ 산화물 촉매가 사용된 촉매 중에서 가장 우수한 활성을 나타내었으며, 14시간 동안의 산화탈수소화 반응기준으로 n-부텐의 전환율은 79.5%, 1,3-부타디엔 수율은 67.7%의 수치를 보였다. 인 전구체의 양이온의 특성에 따라 촉매의 격자 구조가 영향을 받는 것으로 추측되며, 이러한 격자 구조의 차이는 촉매의 재산화 능력에 영향을 주는 것으로 사료된다. 환원 처리된 촉매의 승온재산화 실험으로부터 촉매의 반응활성은 촉매의 재산화 능력과 밀접하게 관련이 있었으며, 인산을 전구체로 사용하여 제조한 산화물 촉매가 다른 인 전구체와 비교하여 가장 좋은 재산화 능력을 나타내었다.

2-Propanol/Acetone/Hydrogen 반응계로 구성된 화학적 열펌프 시스템의 모사 연구 (A Study on the Simulation of Chemical Heat Pump System Based on 2-Propanol /Acetone/Hydrogen System)

  • 김범재;여영구;정연수;송형근
    • 한국시뮬레이션학회논문지
    • /
    • 제5권1호
    • /
    • pp.43-50
    • /
    • 1996
  • 2-propanol /acetone/hydrogen 반응계로 구성된 화학적 열펌프 시스템은 낮은 온도(82.5~$90^{\circ}C$)에서의 2-propanol의 탈수소화 반응과 높은 온도(약 $200^{\circ}C$ 부근)에서의 acetone 의 수소화반응을 이용하여 열을 고품위화 시키는 장치이다. 본 연구에서는 이 시스템의 해석 및 설계를 목적으로 이 시스템에 대한 수치적인 모델들을 세우고 Sequential modular approach를 이용하여 시스템의 모사를 수행하였다. 또한 에너지 효율을 최대화하기 위하여 열펌프 시스템에서의 환류비의 영향을 규명하였다. 모사결과 이 시스템의 scale up을 위한 정량적인 정상상태 운전조건들을 구할수 있었으며 두 반응의 반응 전화율이 다르더라도 반응물의 유량의 차이를 통하여 두 반응열이 거의 같아지는 것을 알수 있었다. 아울러 주어진 운전조건에서 증류의 환류비는 최소환류비 근처의 최적값이 존재함을 알수 있었다.

  • PDF

Melt-spining 공법에 의한 Mg-33.5%Ni 수소 저장 합금 제조 및 수소저장 특성 (Fabricatin and Hydrogen Storage Property of Mg-33.5%Ni Alloy Powder Prepared by Melt-Spining Process)

  • 홍성현;임창동;배종수;나영상
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.399-405
    • /
    • 2007
  • The hyper-eutectic Mg-33.5%Ni alloy was rapidly solidified by melt spinning process. The melt-spun Mg-33.5%Ni has amorphous structure and crystallization occurred above $162^{\circ}C$. The hydriding and dehydriding rates of melt-spun Mg-33.5%Ni increased with cycle and high rate of hydrogen storage occurred at 3rd cycle. The maximum hydrogen amount absorbed in melt-spun Mg-33.5%Ni at $300^{\circ}C$ is about 4.5%.

공정 Mg-Ni계 합금 분말의 제조 및 수소저장 특성 (Fabrication and hydrogen storage property of eutectic Mg-Ni based alloy powder)

  • 홍성현;배종수;임창동;나영상;송명엽
    • 한국수소및신에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.174-180
    • /
    • 2006
  • The eutectic Mg-23.5%Ni alloy was casted by melting and solidification. The powders of Mg-23.5%Ni and (Mg-23.5%Ni)-10% iron oxide were prepared by mechanical grinding of casted Mg-Ni alloy and casted Mg-Ni alloy+oxide, respectively. As milling time increases, hydriding and dehydriding rates of Mg-Ni and Mg-Ni-oxide alloy powders increase. The additions of iron oxide to Mg-Ni alloy and Mg-Ni-oxide increase hydriding rates and slightly decrease dehydriding rates.

$\textrm{TiH}_2$ 분말의 소결 (Sintering of $\textrm{TiH}_2$ Powders)

  • 김원백;최국선;서창열;길대섭;하호
    • 한국재료학회지
    • /
    • 제9권3호
    • /
    • pp.282-289
    • /
    • 1999
  • 티타늄 수소화물(TiH$_2$) 분말을 원료로 사용하여 Ti 소결체를 제조하였다. 원료분말은 수소화-탈수소화법(HDH법)에 의해 제조한 상용분말이었으며 비교를 위해 동일한 입도를 갖는 Ti 분말도 함께 소결하였다. $TiH_2$는 소결체의 밀도를 현저하게 촉진하였으며 $TiH_2$$\longrightarrow$$Ti+H_2$의 탈수소반응에 의해 생성되 청정한 Ti분말이 소결을 촉진하기 때문인 것으로 판단된다. 같은 이유로 $TiH_2$소결체의 산소농도는 Ti 소결체보다 낮게 나타났다. 소결체의 잔류수소는 소결온도가 증가함에 따라 감소하였으며 $1200^{\circ}C$ 이상에서는 5 ppm 이하의 낮은 값을 나타냈다. 소결체의 경도는 소결밀도 및 산소량에 비례하는 것으로 나타났다. $TiH_2$분말의 cubic$\longrightarrow$tetragonal 변태온도는 X-선 회절분석 결과 $16~20^{\circ}C$ 구간으로 밝혀졌다.

  • PDF

경질알칸의 탈수소 반응을 위한 산소활용기술 연구 동향 (Research Trends of Technology Using Oxygen for Dehydrogenation of Light Alkanes)

  • 고형림
    • 공업화학
    • /
    • 제27권2호
    • /
    • pp.128-134
    • /
    • 2016
  • 최근 셰일가스의 개발로 프로판, 부탄과 같은 경질알칸으로부터 프로필렌, 부텐, 부타디엔과 같은 올레핀을 제조하는 탈수소 공정에 대한 연구와 상용화가 많이 진행되었다. 특히 직접 탈수소화 반응의 열역학적 한계를 극복하고자 산화적 탈수소 또는 선택적 수소 산화 반응과 같이 산소를 활용한 기술의 연구개발이 진행되거나, 실제 공정에 적용된 사례들도 보고되고 있다. 이에 본 연구에서는 경질알칸의 탈수소 반응을 위한 산소활용기술의 최근 연구동향을 가스상의 산소를 활용하는 방법과 고체산화물의 격자산소를 활용한 기술로 나누어 정리하고, 산소활용기술의 현황과 연구 개발 방향 및 향후 전망에 대해 고찰하였다. 반응물의 반응성에 따라 기체상 산소의 적용이 용이한 경우와 반응성의 조절을 위해 격자산소를 이용하는 기술로 분류할 수 있었고, 전환율을 높이면서 선택도를 낮추지 않는 기술의 개발이 주요한 목표가 되었다.

Ti-Cr-V 합금의 수소화-탈수소화에 따른 상천이 및 열처리에 의한 수소저장특성의 향상 (Structural transition of Ti-Cr-V alloys with hydrogenation and dehydrogenation and the improvement of their hydrogen storage properties by heat treatment)

  • 유정현;조성욱;심건주;최국선;박충년;최전
    • 한국수소및신에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.125-132
    • /
    • 2006
  • The alloys which compositions were represented by the formula, $Ti_{(0.22+X)}Cr_{(0.28+1.5X)}V_{(0.5-2.5X)}$ ($0{\leq}X{\leq}0.12$), had the total hydrogen storage capacity higher than 3 wt% and the effective hydrogen storage capacity higher than 1.4 wt%. Particularly, among all the tested alloys, the $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy exhibited the best effective hydrogen storage capacity of 1.65 wt%. Furthermore, the reversible bcc${\leftrightarrow}$fcc structural transition was observed with hydrogenation and dehydrogenation, which predicted the possibility of pressure cycling. EDS analysis revealed micro-segregation, which suggested the necessity of microstructure homogenization by heat treatment. The $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy was selected for heat treatment and for other related studies. The results showed that the total and the effective hydrogen storage capacity increased to 3.7 wt% and 2.3 wt%, respectively. The flatness of the plateau region was also greatly improved and heat of hydride formation was determined to be approximately -36 kJ/mol $H_2$.