• Title/Summary/Keyword: 수소화 알루미늄 첨가반응

Search Result 10, Processing Time 0.026 seconds

Study on combustion characteristics of seawater-reactive solid propellant for underwater propulsion (수중추진을 위한 해수반응성 고체추진제의 연소특성에 관한 연구)

  • Park, Kilsu;Kim, Taegyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.128-130
    • /
    • 2017
  • $NaBH_4$ was added to improve the water reactivity of aluminum powder as a solid propellant for underwater propulsion. Aluminum powders showed different combustion characteristics depending on the amount of $NaBH_4$ added. When $NaBH_4$ was added, it was burned by reaction with water even at a temperature much lower than the boiling point. In this study, it was confirmed that $NaBH_4$ is an effective additive to accelerate the vapor reaction with Al powder.

  • PDF

Study on the Hydrogenation and Isomerization Reaction of Dimethylcyclopentadiene (디메틸시클로펜타디엔의 수소화 및 이성화반응 연구)

  • Jeong, Byung Hun;Han, Jeong Sik;Lee, Jeong Ho;Kim, Seong Bo;Lee, Bum Jae
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.566-570
    • /
    • 2005
  • The study on the hydrogenation and isomerization of unsaturated bicyclic hydrcarbon compounds using methylcyclopentadiene dimer (MCPD) was carried out. Exo compound was prepared through isomerization reaction after two hydrogenation reaction steps. In the first hydrogenation reaction which needs one mole of hydrogen, the formation rate of monomer was increased as dimer was decomposed at reaction temperature above $100^{\circ}C$. At first hydrogenation, DHDMCPD [dihydrodi(methylcyclopentadiene)] was formed and second hydrogenation was proceeded to produce THDMCPD [tetrahydrodi(methylcyclopentadiene)], the ratio of exo to endo THDMCPD was varied by the control of 2nd hydrogenation temperature. To improve the process, continuous 1st and 2nd hydrogenation conditions were established by using the 2nd stage heat controllable reactor. Also, catalytic activities were compared by the use of halogenized aluminum, metal halides and solid acids catalysts on the isomerization reaction from endo to exo THDMCPD.

Hydrogen Evolution Rates of the Aluminum-Air Unit Cell (알루미늄-공기 단위전지의 수소발생속도)

  • Shim Eun-Gi;Doh Chil-Hoon;Moon Seong-In;Hwang Young-Gi
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.166-171
    • /
    • 2001
  • In an aluminum-air unit cell used alkaline solution, Hydrogen evolution rates were investigated far the observation of the effects of alloy element, inhibitor and its concentration in electrolyte, KOH concentration, solution temperature, and current density loaded to cell. Hydrogen evolution rates were reduced up to $50\%$ by saturating the solution with ZnO, while ZnAc(Zinc Acetate) did not work as inhibitor. The inhibition effect of ZnO increased with increasing the KOH concentration and solution temperature. They were linearly increased with the KOH concentration and current density in first order and exponentially increased with the solution temperature.

Conversion of Methanol to Hydrocarbons over Heteropoly Acids(II) (헤테로폴리산 촉매에 의한 탄화수소로의 메탄올 전환반응(II))

  • Hong, Seong-Soo;Lim, Ki-Chul;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.335-341
    • /
    • 1993
  • In the conversion of methanol, the effect of acide property of heteropoly compounds on the catalytic activity was investigated. The pretreatment of Cu-exchanged 12-tungstophosphoric acid with hydrogen enhanced both the selectivity for propane and the conversion of methanol, and the pretreatment of Al-exchanged 12-tungstophosphoric acid with water enhanced the acid strength of the catalyst. The water added into the reactant decreased the conversion of methanol, while the pretreatment temperature did not affect it but the propylene/propane ratio. Various partially-substituted Al salts of 12-tungstophosphoric acid showed different catalytic activities depending on the degree of Al-substitution.

  • PDF

Hydrogenation Characteristics of Aromatics in Residue Oil of Naphtha Cracking on Pt/Pd Impregnated Mesoporous Molecular Sieve (메조포러스 분자체에 담지된 Pt/Pd 촉매상에서 납사분해 잔사유의 방향족 화합물 수소화 특성)

  • Choi, Jong Hwa;Jeong, Soon Yong;Oh, Sung-Geun
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.675-682
    • /
    • 2005
  • Al containing mesoporous molecular sieve (Al-MMS) was synthesized by hydrolysis of $H_2SiF_6$ and $Al(NO_3)_3{\cdot}9H_2O$. The material obtained was characterized by XRD, $N_2$-physisorption. The specific surface area was $981m^2/g$, and the average pore size was uniformity $39{\AA}$. It was confirmed that the acidity of Al-MMS was milder than that of zeolite Y based on the results of $NH_3$-TPD. Active materials, Pt and Pd, were loaded on Al-MMS in order to examine the feasibility of using Al-MMS as a catalyst support in the hydrogenation of aromatic compounds included in the residue oil of a naphtha cracker. The hydrogenation activity of PtPd/Al-MMS has been studied by following the kinetics of the hydrogenation of naphthalene, and by comparing the kinetic parameters obtained with Pt and Pd catalysts supported on the other mesoporous material support and commercial conventional support materials. PtPd/Al-MMS catalyst shows the highest activity of hydrogenation and sulfur resistance. The high activity of PtPd/Al-MMS was confirmed again in the hydrogenation of PGO (pyrolized gas oil), which is residue oil obtained from a naphtha cracker. Therefore, PtPd/Al-MMS can be applied to the hydrogenation of aromatic compounds included in the residue oil of a commercial naphtha cracker commericially.

Mixing and Gas Removal Behavior in Scrap Remelt of Light Metal by Impeller Agitation (임펠러 교반에 의한 경량금속 스크랩 용해로에서의 혼합 및 탈 가스 거동)

  • 한정환;이주한;김석범;변지영;심재동
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.42-51
    • /
    • 1998
  • Hydrogen in atmosphere can easily dissolve in melt of light metal alloys. Increasing demand for recycling of light metal a alloys has, therefore, focused attention on the removal of hydrogen gas, and alloy addition in melt has become an imporLant r refining process. For this purpose behaviors of mixing and hydrogen degassing in impeller agitated refming vessel with/without barnes were investigated. Flow patterns, mixing time behavior and kinetics of degassing in various agitating conditions were analysed in watet model experiments. And, numerical analysis on turbulent flow pattern in impeller agitated vessels was performed.

  • PDF

Characteristics of Catalyst and Influence of Promoter for Hydrogen Electrode in Alkaline Fuel Cell (알칼리형 연료전지용 수소극의 촉매 특성과 조촉매의 영향)

  • Yun, Sun Ho;Lee, Hong Ki;Lee, Ju Seong
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.373-380
    • /
    • 1993
  • The preparation method of Raney nickel catalyst and the effect of promotor for the hydrogen electrode in alkaline fuel cell were investigated with electrochemical methods. The best electrode performance was observed with the Raney nickel which was obtained at $700^{\circ}C$ of sintering temperature and 60:40 of nickel:aluminum. As titanium was added for promotor, the activity of catalyst and characteristic of electrode was improved. Especially, the electrode containing 2w/o of titanium showed the maximum mass activity of 2.4A/g and its mean particle size was $5.7{\mu}m$. The resistance and capacitance of the electrode containing 2w/o of titanium, measured with AC impedance spectroscopy, were calculated to the $0.3{\Omega}cm^2$ and $0.42F/cm^2$, respectively.

  • PDF