• Title/Summary/Keyword: 수소폭발

Search Result 132, Processing Time 0.04 seconds

다공성 나노 Pd 박막의 수소 검출 특성

  • No, Hui-Jun;Park, Jin-Seong;Kim, Hyeon-Jong;Kim, An-Na;Han, Min-A;Lee, Ho-Nyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.84.1-84.1
    • /
    • 2018
  • 현재 사용되고 있는 화석 연료는 고갈되고 있으며 지구온난화와 같은 환경오염을 일으키는 주원인으로 이를 대체하는 에너지원으로서 수소가 주목받고 있다. 그러나 수소는 상온 및 대기압에서 4 %의 낮은 LEL (lower explosive limit)을 가지므로 높은 인화성과 폭발성을 가진다. 또한 무색, 무취한 성질을 가지고 있어 사람에 의해 검출되지 않는다. 그러므로 상온에서의 수소 농도를 정량화하고 검출하기 위한 방법이 필요하다. 수소를 검출하기 위한 수소센서에는 저항, 촉매, 광학, 일함수 등을 이용한 센서들이 있으며 그 중 저항을 이용한 귀금속 기반 수소센서가 널리 알려져 있다. 팔라듐(Pd), 백금 (Pt)와 같은 귀금속 기반 수소센서는 높은 수소 용해도 및 확산으로 인해 수소에 우수한 선택성을 가진다. 특히 Pd는 흡착에 대한 친화성이 매우 우수하다. 팔라듐에 수소가 노출되면, 수소가 Pd 격자로 확산되어 Pd-hydride를 형성시켜 부피가 팽창되고 저항이 변한다. 이러한 특성을 바탕으로 팔라듐의 저항 변화를 기반으로 한 수소센서의 개발이 진행되고 있다. 본 연구에서는 물리기상증착 (PVD)을 이용하여 다양한 다공성 나노 Pd 박막을 가지는 수소센서를 제작하였으며, 수소 농도에 따른 실온에서의 수소 검출 특성을 관찰하였다. 제작된 다공성 나노 Pd 박막의 특성은 SEM, TEM 및 XRD를 통하여 확인하였다. 다공성 나노 Pd 박막이 수소에 노출 되었을 때 전자 산란 및 접촉 면적의 증가에 따른 저항의 변화를 확인하였다.

  • PDF

A Study on Quantitative Risk Analysis & Model Application for Hydrogen Filling Center (수소충전시설에 대한 정량적 위험성 평가 및 모델적용에 관한 연구)

  • Shin, Jung-Soo;Byun, Hun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.87-101
    • /
    • 2012
  • In gas industries, the potential risks of serious accidents have been increased due to high technology application and process complexities. Especially, in case of gas-related accidents, the extent of demage is out of control since gas plants handle and produce combustible, flammable, explosive and toxic materials in large amounts. The characteristics of this kind of disaster is that accident frequency is low, while the impact of damage is high, extending to the neighboring residents, environment and related industries as well as employees involved. The hydrogen gases treated important things and it used the basic material of chemical plants and industries. Since 2000, this gas stood in the spotlight the substitution energy for reduction of the global warming in particular however it need to compress high pressure(more than 150 bar.g) and store by using the special cylinders due to their low molecular weight. And this gas led to many times the fire and explosion due to leak of it. To reduce these kinds of risks and accidents, it is necessary to improve the new safety management system through a risk management after technically evaluating potential hazards in this process. This study is to carry out the quantitative risk assesment for hydrogen filling plant which are very dangerous(fire and explosive) and using a basic materials of general industries. As a results of this risk assessment, identified the elements important for safety(EIS) and suggested the practical management tools and verified the reliability of this risk assessment model through case study of accident.

A Study on the safety measures for the protection of hydrogen cooling system of generator (수소를 냉각매체로 하는 발전기 안전대책에 관한 연구)

  • Lee Choon-Ha;Yuk Hyun-Dai
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.55-61
    • /
    • 2004
  • This paper provided a counter measures against the troubles and accidents that are likely to take place in the power plant using hydrogen gas as a coolant for the cooling system of the generator. Because of the extremely wide flammability limits of hydrogen in comparison to the other flammable gases, the safety measures against the hydrogen accidents is very important to ensure the normal operation of electric-power facility. This study's purpose was a presentation of standard model of safety management of hydrogen equipments in the coal firing power plant such as following items: 1) providing the technical prevention manual of the hydrogen explosions and hydrogen fires occurring in the cooling system of power generator; 2) the selection of explosion-proof equipments in terms of the risk level of operating environment; 3) the establishment of regulations and counter measures, such as the incorporation of gas leakage alarm device, for preventing the accidents from arising, 4) the establishment of safety management system to ensure the normal operation of the power plant.

  • PDF

Development of On-axis Raman Lidar System for Remotely Measuring Hydrogen Gas at Long Distance (원거리 수소 가스 원격 계측을 위한 On-axis 라만 라이다 장치 개발)

  • Choi, In Young;Baik, Sung Hoon;Lim, Jae Young;Cha, Jung Ho;Kim, Jin Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.3
    • /
    • pp.119-125
    • /
    • 2018
  • Hydrogen gas is an important and promising energy resource that has no emissions of pollutants during power generation. However, hydrogen gas is very dangerous because it is colorless, odorless, highly flammable, and explosive at low concentration. Conventional techniques for hydrogen gas detection are very difficult for measuring the hydrogen gas distribution at long distances, because they sample the gas to measure its concentration. Raman lidar is one of the techniques for remotely detecting hydrogen gas and measuring the range of the hydrogen gas distribution. A Raman lidar system with an on-axis optical receiver was developed to improve the range of hydrogen gas detection at long distance. To verify the accuracy and improvement in the range of detecting the hydrogen gas, experiments measuring the hydrogen gas concentration are carried out using the developed on-axis Raman lidar system and a gas chamber, to prevent explosion of the hydrogen gas. As a result, our developed on-axis Raman lidar system can measure a minimum hydrogen gas concentration of 0.66 volume percent at a distance of 50 m.

A Study on the Explosion Hazard by Spark Discharge of the Lithium-Ion Battery (리튬이온전지의 불꽃방전에 의한 폭발위험성에 관한 연구)

  • Lee, Chun-Ha;Jee, Seung-Wook;Kim, Shi-Kuk
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.14-20
    • /
    • 2010
  • This paper was studied on the explosion hazard by spark discharge of the lithium-ion battery. The experimental samples were chosen lithium-ion battery(general, notebook) which were used for source of portable equipment. The IEC(International Electrotechnical Commission) type spark ignition test apparatus and experimental gases such as methane, propane, ethylene or hydrogen were used for explosiveness test. It was confirmed through the experiment that the explosion hazard by spark discharge. Also, it was used thermal imager for confirm that spontaneous ignition possibility by short-circuit. As the result, this paper verified that lithium-ion battery should be used and designed by special attention safety in the hazardous zone which is existed explosiveness gas.