• Title/Summary/Keyword: 수소첨가 분해

Search Result 202, Processing Time 0.026 seconds

Middle distillate production by the hydrocracking of FT wax over solid acid catalysts (고체산 촉매상에서 FT WAX의 수소첨가 분해반응에 의한 중질유 생산)

  • Jeong, Heondo;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.114.2-114.2
    • /
    • 2010
  • Fisher-Tropsch 반응을 통하여 생성되는 왁스는 황 또는 질소 성분을 포함하지 않으며 또한 방향족 및 중금속 성분이 없기 때문에 청정 수송유로써 사용이 가능하다는 장점이 있다. 그러나 Fisher-Tropsch 왁스는 그 분자량이 매우 큰 사슬형 탄화수소이기 때문에 수소첨가 분해반응을 통하여 중질유 range의 탄소수를 갖는 탄화수소로의 전환 기술이 반드시 필요하다. 이러한 수소첨가 분해반응에 사용되는 촉매는 강한 산점을 지니고 있는 양이온 교환 지르코니아가 대표적이라 할 수 있는데 최근 들어 강한 산점과 높은 산밀도, 그리고 기공의 모양과 크기에 따라 특정 반응이 제어되거나 활성화되는 형상선택성을 가지고 있기 때문에 다양한 반응에 촉매로 사용되는 제올라이트에 Pt 등의 귀금속을 담지한 촉매를 사용하여 Fisher-Tropsch 왁스의 전환율 및 중질유분의 선택도를 높이는 기술에 대한 연구가 활발히 진행되고 있다. 따라서 본 연구에서는 다양한 제올라이트 촉매에 귀금속을 담지하여 촉매를 제조하고 1L 급 고압 배치형 반응기를 이용하여 Fisher-Tropsch 왁스의 수소첨가 분해반응에 의한 중질유 제조 실험을 수행하고 그 결과를 고찰하였다.

  • PDF

감마선 조사에 의한 TCE, PCE 제거에 미치는 과산화수소의 효과

  • 윤정효;정흥호;정진호;유대현;이면주
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.05a
    • /
    • pp.129-132
    • /
    • 2001
  • 감마선 조사에 의한 TCE와 PCE의 분해에 있어서, TCE는 과산화수의 영향을 거의 받지 않았지만, PCE는 과산화수소의 농도증가에 따라 분해가 감소되었다. 이들의 원인을 밝혀내기 위해 과산화수소의 첨가에 따른 $\cdot$OH의 생성량 변화를 EPR/spin-trapping의 방법에 의해 확인한 결과, EPR의 DMPO-OH의 신호강도 조사에서 과산화수소를 첨가한 경우와 첨가하지 않은 경우 모두 차이가 거의 없었다. 따라서 감마선 조사에 과산화수소를 별도로 첨가해도 $\cdot$OH의 생성량 증가가 없는 것으로 보아, 방사선에 의한 TCE 분해에 있어 과산화수소의 첨가는 큰 영향을 주지 않는다는 것을 밝힐 수 있었다. 그러나 PCE의 경우는 향우 계속 연구될 예정이다.

  • PDF

Changes in the Physicochemical Characteristics and Triglyceride Molecular Species of Corn oil during Hydrogenation (수소첨가에 따른 옥수수유의 트리글리세리드 분자종 및 이화학적 특성의 변화)

  • Kim, Hyeon-Wee;Cha, Ik-Soo;Kim, Jin-Ho;Kim, Hyun-Suck;Park, Ki-Moon;Son, Se-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.637-642
    • /
    • 1993
  • Changes in the physicochemical characteristics and triglyceride molecular species of corn oil under the following condition of hydrogenation; temperature $180^{\circ}C,\;H_{2}$, pressure $2.0{\pm}0.3bar$, the amount of Ni catalyst 0.048%(Ni/oil by wt.) and agitation speed 300 rpm. The rate of hydrogenation, expressed as the reduction rate of the iodine value with respect to time, is first order and high (K>0.01). When the reduction rate of the iodine value was 39.9%, hydrogenation time was 30 min, 18:1 was highest(77.06%), thereafter that was decreased and 18:0 increased. In the triglyceride composition, OLL, LLL were reduced markedly in 10 min, thereafter reduced slightly. And PLO, PLL, OLO were eliminated in first 30 min. On the other hand, POO, PLS(CN52) and OOO, SLO(CN54) were increased sharply, and then that showed little change. The melting point(MP) of hydrogenated corn oil were $27.8^{\circ}C\;and\;44.1^{\circ}C$ after 20 min and 60 min, respectively. Trans isomer content increased to 46.8% during 40 mins of hydrogenation and then decreased insignificantly. The solid fat content were linearly increased with hydrogenation time. Accordingly, it is confirmed that this condition of hydrogenation was selective, preferential elimination of polyunsaturated fatty acid went stepwise and trans isomer was formed promotedly. These results suggest that fat modification techniques can be used for practical application.

  • PDF

Effect of Hydrogen Peroxide on the Acid Hydrolysis of Inulin (Inulin의 산 가수분해 반응에 과산화수소가 미치는 영향)

  • 윤석준;김성배최주홍박영철
    • KSBB Journal
    • /
    • v.10 no.3
    • /
    • pp.298-303
    • /
    • 1995
  • Hydrogen peroxide has a characteristic of being dissociated rapidly into atomic oxygen and water when it is contacted with organic materials, resulting in a decrease in molecular weight of a polymer like carbohydrate. This effect on inulin hydrolysis under ultrasound irradiation was investigated. Maximum effect of hydrogen peroxide appeared at the H2O2 concentration of 2.3%(w/v) under the range of $50∼60^{\circ}C$ and 0.1∼0.3%(w/w) HCl. Compared to control reactions, the promotion effect reached 9∼43%. The activation energy, 26kca1/mo1, of inulin hydrolysis with H2O2 addition was similar to that without H2O2 addition, 25kca1/mo1. This implies that the rate enhancement of inulin hydrolysis with H2O2 addition is due to the increase of frequency factor.

  • PDF

Photocatalytic degradation of a polycyclic aromatic sulfur hydrocarbon ($TiO_2$를 이용한 다환 방향족 유기황 탄화수소의 광분해효율 연구)

  • Jo Seoung-Hye;Lee Sang-Geun;Lee Je-Geun;Kim Il-Gyu
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.163-166
    • /
    • 2005
  • [ $TiO_2$ ] 광촉매에 의한 분해 반응의 활성을 높이기 위한 다양한 연구가 진행되었다. 광촉매 반응은 1차 반응을 따랐으며 초기농도가 높을수록 분해효율이 감소하는 경향을 보였다. 본 연구에서는 산화제로 과산화수소가 주입되었을 경우 분해효율을 조사하였으며, 과산화수소를 주입하였을 경우가 그렇지 않은 경우보다 더 높은 분해효율을 보였다. 또한 과산화수소 주입량을 달리했을 때, 주입량이 증가할수록 효율이 높아지다가 일정량 이상에서는 오히려 효율이 감소하는 것으로 나타났다. 따라서 과산화수소 최적첨가량이 존재함을 알 수 있었다. 한편 $TiO_2$에 전이금속을 첨가하여 전이금속이 $TiO_2$ 촉매의 분해효율에 미치는 영향을 알아보았다. Pt(0.5%)-$TiO_2$가 가장 높은 분해효을을 보였으며, Pt첨가함량이 더 큰 Pt(2%)-$TiO_2$는 함량이 증가했음에도 불구하고 큰 차이는 아니지만 오히려 효율이 감소하였다. 따라서 촉매표면에서 전자와 정공이 생성되었을 때, Pt가 전자를 포획함으로써 전자와 정공의 재결합율을 감소시켜 OH라디칼을 생성할 수 있는 정공이 많아져 반응효율을 증가되는 것을 알 수 있었고, 금속에 따른 최적 첨가함량이 존재함을 알 수 있다. 반면에 Pd를 첨가했을 경우는 첨가 함량에 관계없이 모두 분해효율이 오히려 감소하는 경향을 나타냈으며 이는 전이금속 고유의 성질이나, 또는 대상물질에 따라 각기 다른 경향이 존재함을 나타내며 추가적인 연구가 필요하다고 사료된다.

  • PDF

Sulfate Modulation for Hydrogen Production by Chlamydomonas reinhardtii in Continuous Culture (Chlamydomonas reinhardtii 연속 배양에서 수소생산을 위안 황 조절)

  • Kim, Jun-Pyo;Park, Tai-Hyun;Kim, Mi-Sun;Sim, Sang-Jun
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.453-457
    • /
    • 2005
  • We investigated the effect of sulfate re-addition on hydrogen production under sulfur-deprived condition. When the final concentration of sulfate to cell suspensions($0{\sim}120{\mu}M$) was increased, chlorophyll concentration, culture density, and total amount of $H_2$ produced, increased up to an optimal concentration of $30{\mu}M\;MgSO_4$. Maximum hydrogen volume was 236 mL $H_2/L$ culture at $30{\mu}M\;MgSO_4$. However, the addition of excess sulfate(above $MgSO_4\;60{\mu}M$) delayed the start of hydrogen production and the induction of hydrogenase. Accordingly, the final yield of hydrogen production was reduced. Using these results, we attempted the continuous and sustained hydrogen production by sulfate re-addition($30{\mu}M\;MgSO_4$) using a single C. reinhardtii culture for up to 4 cycles. In total, hydrogen production volume was 625 mL $H_2/L$ culture.

Characteristics of Cyanide Decomposition by Hydrogen Peroxide Reduction (과산화수소에 의한 시안의 분해특성)

  • 이진영;윤호성;김철주;김성돈;김준수
    • Resources Recycling
    • /
    • v.11 no.2
    • /
    • pp.3-13
    • /
    • 2002
  • The characteristics of cyanide decomposition in aqueous phase by hydrogen peroxide have been explored in an effort to develop a process to recycle waste water. The self-decomposition of $H_2O$$_2$at pH 10 or below was minimal even in 90 min., with keeping about 90% of $H_2O$$_2$undissociated. On the contrary, at pH 12 only 9% of it remained during the same time. In the presence of copper catalyst at 5 g Cu/L, complete decomposition of $H_2$O$_2$was accomplished at pH 12 even in a shorter time of 40 min. The volatility of free cyanide was decisively dependent on the solution pH: the majority of free cyanide was volatilized at pH 8 or below, however, only 10% of it was volatilized at pH 10 or above. In non-catalytic cyanide decomposition, the free cyanide removal was incomplete in 300 min. even in an excessive addition of $H_2$$O_2$at a $H_2$$O_2$/CN molar ratio of 4, with leaving behind about 8% of free cyanide. On the other hand, in the presence of copper catalyst at a Cu/CN molar ratio of 0.2, the free cyanide was mostly decomposed in only 16 min. at a reducedH202/CN molar ratio of 2. Ihe efnciency of HBO2 in cyanide decomposition decreased with increasing addition of H2O2 since the seu-decomposition rate of $H_2$$O_2$increased. At the optimum $H_2$$O_2$/mo1ar ratio 0.2 of and Cu/CN molar ratio of 0.05, the free cyanide could be completely decomposed in 70 min., having a self-decomposition rate of 22 mM/min and a H$_2$$O_2$ efficiency of 57%.

Biodegradation Enhancement of The Mixture of Kerosene and Diesel by using Biosurfactant from Pseudomonas aeruginosa F722 (Pseudomonas aeruginosa F722부터 유래된 biosurfactant를 이용한 등.경유 혼합물의 생분해율 향상)

  • ;;;skubo Motoki
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.529-535
    • /
    • 2003
  • We studied degradation effects of hydrophobic substrate such as kerosene and diesel by adding a biosurfactant originated from Pseudomonas aeruginosa F722 and chemical surfactants (Tween 80 and detergent) with aeration. The surface tensions of the biosurfactant, Tween 80 and detergent were 30mN/m, 39mN/m and 31mN/m, respectively. When the concentration of biosurfactant added in C-medium was 0.01 and 0.15%(w/v), the ratios of hydrocarbon degradation were 94.3% and 94.2% respectively. It was 6.2%(w/v) higher than when the concentrations of added biosurfactant were 0.05, 0.1 and 0.2%. The degradation ratios of the chemical surfactants (Tween 80 and detergent) were 94.5% and 93.5% respectively. The effects of the biosurfactant and chemical surfactants were similar on the degradation ratio in mixtures of kerosene and diesel. However, the population of viable p. aeruginosa F722 at the end of the cultivation period was twice as higher in the biosurfactant than that in the chemical surfactant. We also studied the effect of aeration (0.5vvm) on the degradation ratio. The biosurfactant addition experiment was conducted with 0.5vvm air, 35$^{\circ}C$, 150rpm, pH 8.0, 3days, 1.0% (w/v) substrate. When p. aeruginosa F722 and 0.15%(w/v) biosurfactant were added, the degradation ratio of hydrocarbon was 94.8%. Without p. aeruginosa F722, it was 68%. Thus, with aeration, the degradation ratio of hydrocarbon was increased by 26.8%. In addition, the cultivation time was shortened by 1/3. The degradation ratios of hydrocarbon in shaking culture (cultivation time; 3days) and stationary culture (cultivation time; 10days) were 94.8 and 93.7% respectively. Thus, the addition of biosurfactant and aeration enhanced the degradation of hydrocarbon originated kerosene and diesel.

Hydrogen Storage Properties of Mg-10wt.%MnO Prepared by Reactive Mechanical Grinding (반응성 기계적 분쇄에 의해 제조한 Mg-10wt.% MnO의 수소 저장 성질)

  • Song, Myoung-Youp;Kwon, Ik-Hyun;Kwon, Sung-Nam;Park, Chan-Gi;Bae, Jong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.25-30
    • /
    • 2005
  • 수소 분위기에서 10wt.%MnO와 기계적인 분쇄(반응성 기계적 분쇄)에 의해 Mg의 수소 저장 성질을 향상시켰다. 회전 속도는 250 rpm, 밀링시간은 2 h, 그리고 시료 대 볼 중량비는 1/45이었다. 준비한 Mg-10wt.%MnO 시료는 활성화를 위한 수소화물 형성 분해 싸이클링이 필요없었으며, 첫 번째 싸이클 593k 12 bar $H_2$에서, 10분 동안에 3.12wt.%, 60분 동안에 3.95wt.%의 수소를 흡수하였다. 또한 Mg-10wt.%MnO는 593k 0.8 bar $H_2$에서 60분 동안에 2.12wt.%의 수소를 방출하였다. MnO와 Mg의 방응성 분쇄는, 핵생성을 용이케하고 (Mg 입자의 표면에 결함 형성과 첨가물에 의해), Mg 입자의 표면에 crack을 만들어 Mg의 입자 크기를 줄여 그 결과 수소 원자의 확산 거리를 작게 함으로써 수소 흡수 방출 속도를 증가시킨다. 수소화물 형성 분해 싸이클링은 Mg 입자의 표면에 crack을 만들고 Mg의 입자 크기를 줄여 수소 흡수 방출 속도를 증가시킨다.

Effect of Environmental Parameters on the Degradation of Petroleum Hydrocarbons in Soil (환경인자가 토양내 석유계탄화수소의 분해에 미치는 영향)

  • 황의영;남궁완;박준석
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.85-96
    • /
    • 2000
  • The purpose of this study was to Investigate the effect of environmental conditions on the degradation of total petroleum hydrocarbons(TPH) in soil. The soil used for this study was sandy loam. Target contaminant, diesel oil, was spiked at 10.000mgTPH/kg dry soil. Moisture content was controlled to 50%, 70%, and 90% of field capacity of the soil. Temperature was controlled to $5^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$. The active degradation of TPH was observed at the moisture contents of 50% and 70% of field capacity, and temperature of $10^{\circ}C$ to $30^{\circ}C$. Degradation rate of n-alkanes was about two times greater than that of TPH. Volatilization loss of TPH was about 2% of initial concentration. Biocide control and no aeration experiments indicated that removal of TPH was primarily occurred by biodegradation under aerobic condition.

  • PDF