• Title/Summary/Keyword: 수소저장용기

Search Result 90, Processing Time 0.024 seconds

Analysis of Operation Data Monitoring for LPG-Hydrogen Multi-Fueling Station (LPG-수소복합충전소 운영데이터 모니터링 분석)

  • Park, Songhyun;Kim, Donghwan;Ku, Yeonjin;Kim, Piljong;Huh, Yunsil
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.1-7
    • /
    • 2019
  • In response to the recent increase in demand for hydrogen stations, the Ministry of Trade and Industry has enacted and promulgated special notifications to enable the installation of hydrogen stations in the form of the combined complex in existing automotive fuel supply facilities such as LPG, CNG, and gas stations. Hydrogen multi energy filling stations haven't been operated yet in Korea till the establishment of special standards, so it is necessary create special standards by considering all Korean environmental characteristics such as four seasons and daily crossings. In this study, we collected and analyzed the charging data of Ulsan LPG-Hydrogen Multi Fueling Station installed for the first time in Korea. The data are hourly temperature and pressure data from compressors, storage vessels and dispensers. We used the data collected for a year, including the highest temperature and the lowest temperature in Ulsan to compare seasonal characteristics. As a result, it was found that the change of the outside temperature affects the initial temperature of the vehicle's container of the hydrogen car, which finally affects the charging time and the charging speed of the vehicle. There was no effect on vehicle containers because the limit temperature suggested by the Korean Hydrogen Station Standard(KGS FP217) and the US Filling Protocol(SAE J2601) was not exceeded.

Design of Bottom Shape and Forming Analysis of Hydrogen Pressure Vessel with Maximum Volume (최대 내용적을 갖는 수소압력용기의 형상설계 및 성형해석)

  • Park, Gun Young;Kwak, Hyo Seo;Lee, Kwang O;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.941-948
    • /
    • 2017
  • Recently, hydrogen energy has been in the spotlight as an alternative to diminishing fossil fuels and as a potential solution to environmental pollution. The development of hydrogen-fueled vehicles and the demands for improved fuel efficiencies have resulted in the need to increase the volume of the hydrogen pressure vessels. Pressure vessels having an elliptical bottom, as opposed to one that is hemispherical, allow for a greater capacity. However, there are insufficient studies on the feasibility of the forming process required for an elliptical bottom. In this study, the liner capacity is calculated according to the ratios of the major to the minor axes of the elliptical bottom part in a hydrogen pressure vessel. Structural safety is verified through finite element analyses, and the results are compared to the theoretical results. The feasibility of the proposed elliptical shape of the pressure vessel bottom, while filled to maximum capacity, is validated through forming analysis.

A Study on the Improvement of Hydrogen Detection Inspection Method of Hydrogen Cylinder on Hydrogen Bus (수소버스 사용 내압용기 수소검출량 검사방법 개선을 위한 연구)

  • Kim, Hyunjun;Weo, Unseok;Jo, Hyunwoo;Lee, Hyeoncheol;Hwang, Taejun;Lee, Hosang;Ryu, Ikhui;Choi, Sookwang;Oh, Youngkyu;Park, Sungwook
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.1
    • /
    • pp.51-56
    • /
    • 2021
  • As hydrogen is classified as an eco-friendly fuel, vehicles using hydrogen fuel are being developed worldwide. Vehicle fuel hydrogen is stored in cylinders at 70 MPa, so there is a high risk of explosion. Therefore, it is important to inspect hydrogen cylinders in used-vehicles. This study was conducted to improve the inspection method of the cylinders currently mounted on used-hydrogen buses. The inspection method is an image analysis method using a camera. Calcaulation algorithm was developed to quantitatively chech the amount of hydrogen leakage by the image method. As a result of adding a contact angle element to the calculation algorithm suggested by the GTR regulation and comparing it with the experimental data of the GTR regulation, the algorithm reliability was 94%, which secured similarity.

An Experimental Study of Heat and Mass Transfer During Absorption and Desorption Processes in a Hydride Material Bed (수소저장합금 반응용기에서 수소 흡.탈장과정에서의 열 및 물질전달 특성에 관한 실험적인 연구)

  • 박찬우;강병하;이춘식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.202-211
    • /
    • 1995
  • Heat and hydrogen transfer characteristics have been experimentally investigated for a hydride reaction bed, in which hydride material LaN $i_{4,7}$A $l_{0.3}$ is contained for hydrogen storage. This problem is of particular interest in the design of metal hydride devices such as metal-hydride refrigerators, heat pumps, or metal-hydride storage units. Transient behavior of hydrogen transfer through the hydride materials as well as heat transfer is studied during absorption and desorption processes in detail. The experimental results obtained indicate that the mass flow of the hydrogen is strongly affected by the governing parameters, such as the initial pressure of the reaction bed, absorption or desorption period, and cooling or heating temperature. These mass transfer results are along with the heat transfer rate between hydride materials and heat transfer medium in the reaction bed.d.d.

Rapid Cooling Performance Evaluation of a ZrCo bed for a Hydrogen Isotope Storage (수소동위원소 저장용 ZrCo용기의 급속 냉각 성능 평가)

  • Lee, Jungmin;Park, Jongchul;Koo, Daeseo;Chung, Dongyou;Yun, Sei-Hun;paek, Seungwoo;Chung, Hongsuk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.128-135
    • /
    • 2013
  • The nuclear fuel cycle plant is composed of various subsystems such as a fuel storage and delivery system (SDS), a tokamak exhaust processing system, a hydrogen isotope separation system, and a tritium plant analytical system. Korea is sharing in the construction of the International Thermonuclear Experimental Reactor (ITER) fuel cycle plant with the EU, Japan, and the US, and is responsible for the development and supply of the SDS. Hydrogen isotopes are the main fuel for nuclear fusion reactors. Metal hydrides offer a safe and convenient method for hydrogen isotope storage. The storage of hydrogen isotopes is carried out by absorption and desorption in a metal hydride bed. These reactions require heat removal and supply respectively. Accordingly, the rapid storage and delivery of hydrogen isotopes are enabled by a rapid cooling and heating of the metal hydride bed. In this study, we designed and manufactured a vertical-type hydrogen isotope storage bed, which is used to enhance the cooling performance. We present the experimental details of the cooling performances of the bed using various cooling parameters. We also present the modeling results to estimate the heat transport phenomena. We compared the cooling performance of the bed by testing different cooling modes, such as an isolation mode, a natural convection mode, and an outer jacket helium circulation mode. We found that helium circulation mode is the most effective which was confirmed in our model calculations. Thus we can expect a more efficient bed design by employing a forced helium circulation method for new beds.

Numerical Study of Hydrogen Absorption in a Metal Hydride Hydrogen Storage Vessel (금속수소화물 수소 저장 용기 내부의 수소흡장에 대한 수치해석적 연구)

  • Nam, Jin-Moo;Kang, Kyung-Mun;Ju, Hyun-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.249-257
    • /
    • 2010
  • In this paper, a three-dimensional hydrogen absorption model is developed to precisely study hydrogen absorption reaction and resultant heat and mass transport phenomena in metal hydride hydrogen storage vessels. The 3D model is first experimentally validated against the temperature evolution data available in the literature. In addition to model validation, the detailed simulation results shows that at the initial absorption stage, the vessel temperature and H/M ratio distributions are uniform throughout the entire vessel, indicating that the hydrogen absorption is so efficient during the early hydriding process and thus local cooling effect is not influential. On the other hand, nonuniform distributions are predicted at the latter absorption stage, which is mainly due to different degrees of cooling between the vessel wall and core regions. This numerical study provides the fundamental understanding of detailed heat and mass transfer phenomena during hydrogen absorption process and further indicates that efficient design of storage vessel and cooling system is critical to achieve fast hydrogen charging and high hydrogen storage efficiency.

Influence of Punch Velocity on Gas Hydrogen Embrittlement Behaviors in SA372 Steel (압력용기용 강의 가스수소 취화 거동에 미치는 펀치속도의 영향)

  • Bae, Kyung-Oh;Shin, Hyung-Seop;Baek, Un-Bong;Nahm, Seung-Hoon;Park, Jong-Seo;Lee, Hae-Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1497-1502
    • /
    • 2013
  • When using hydrogen gas as an ecofriendly energy sources, it is necessary to conduct a safety assessment and ensure thereliability of the hydrogen pressure vessel against hydrogen embrittlement expected in the steel materials. In this study, by applying the in-situ SP test method, the gas hydrogen embrittlement behaviors in SA372 steel, which is commonly used as a pressurized hydrogen gas storage container, were evaluated. To investigate the hydrogen embrittlement behavior, SP tests at different punch velocities were conducted for specimens with differently fabricated surfaces at atmospheric pressure and under high-pressure hydrogen gas conditions. As a result, the SA372 steel showed significant hydrogen embrittlement under pressurized hydrogen gas conditions. The effect of punch velocity on the hydrogen embrittlement appeared clearly; the lower punch velocity case indicated significant hydrogen embrittlement resulting in lower SP energy. The fractographic morphologies observed after SP test also revealed the hydrogen embrittlement behavior corresponding to the punch velocity adopted. Under this pressurized gas hydrogen test condition, the influence of specimen surface condition on the extent of hydrogen embrittlement could not be determined clearly.

Development of Optimization Code of Type 3 Composite Pressure Vessels Using Semi-geodesic algorithm (준측지궤적 알고리즘을 이용한 타입 3 복합재 압력용기의 최적설계 프로그램 개발)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kim, Cheol-Ung;Kim, Chun-Gon
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Composite vessels for high pressure gas storage are commonly used these days because of their competitive weight reduction ability maintaining strong mechanical properties. To supplement permeability of composite under high pressure, it is usually lined by metal, which is called a Type 3 vessel. However, it has many difficulties to design the Type 3 vessel because of its complex geometry, fabrication process variables, etc. In this study, therefore, GUI (graphic user interface) optimal design code for Type 3 vessels was developed based on semi-geodesic algorithm in which various factors of geometry and fabrication variables are considered and genetic algorithm for optimization. In addition, hydrogen vessels for 350/700 bar that can be applied to FCVs(fuel cell vehicles) were designed using this code for verification.

A Study on the Hydrogen Supply for Variation in Output from a Metal Hydride Canister (금속수소화물 금속용기로부터 출력변동에 필요한 수소공급에 관한 연구)

  • Jung, Young-Guan;Kim, Se-Woong;Kim, Kyung-Hoon;Choi, Seong-Dae;Jang, Tae-Ik;Hwang, Chul-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.216-223
    • /
    • 2009
  • The relation between temperature and hydrogen desorption on variation in output was investigated for the metal hydride canister. For this study, an AB$_5$ type alloy were chosen as a hydrogen storage material in the metal hydride canister. And application to the single proton exchange membrane fuel cell was evaluated. As the results, the hydrogen desorption was linearly increased as the temperature was risen. In addition, metal hydride canister heating was able to correspond the variation of load as power request in the PEMFC system.

A Study on the Thermal Characteristics of High Pressure Hydrogen Storage Tank according to Nozzle Angle and Length/Diameter Ratio (고압수소 저장용기의 노즐 각도 및 길이/직경비에 따른 열적 특성 연구)

  • JEONG HWAN YOON;JUNYEONG KWON;KYUNG SOOK JEON;JIN SIK OH;SEUNG JUN OH
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.431-438
    • /
    • 2023
  • Recently, study on hydrogen is being conducted due to environmental pollution and fossil fuel depletion. High-pressure gas hydrogen commonly used is applied to vehicle and tube trailers. In particular, high-pressure hydrogen storage tank for vehicles must comply with the guidelines stipulated in SAE J2601. There is a charging temperature limitation condition for the safety of the storage tank material. In this study, numerical analysis method were verified based on previous studies and the nozzle angle was changed for thermal management to analyze the increase in forced convection effect and energy uniformity due to the promotion of circulation flow. The previously applied high-pressure hydrogen storage tank has a length/diameter ratio of about 2.4 and was analyzed by comparing the length/diameter ratio with 8. As a result, the circulation flow of hydrogen flowing into the high-pressure hydrogen storage tank is promoted at a nozzle angle of 30° than the straight nozzle and accordingly, the effect of suppressing temperature rise by energy uniformity and forced convection was confirmed.