연속형 혐기성처리 반응조에서 배양된 수소발생 슬러지를 이용하여 증온 조건에서 회분식 혐기성 처리방법으로 유기성 폐수로부터 전환되는 수소가스 및 대사산물들에 대한 연구를 수행하였다. 수소발생에 대한 기질로는 sucrose를 이용하였다. 처리과정에서 발생된 누적수소가스, 휘발성지방산(VFAs) 및 solvents는 Gompertz equation을 이용한 비선형회귀분석을 통하여 계산하였다. 처리과정 중 수소가스는 반응초기에 발생하였고, 발생된 가스내 수소가스가 차지하는 비율은 약 20%이었다. 반응 전과정에서 메탄가스는 발생하지 않았다. 비수소가스발생율은 sucrose 농도가 40 g/l일 때 0.956 ml/g VSs/h이었으며, sucrose 농도가 300g/l의 경우는 0.011 ml/g VSS/h이었다. 수소가 발생하는 기간 동안 VFAs의 생성은 acetate, butyrate의 순으로 높게 생성되었으나, propionate로의 전환은 발견되지 않았다. solvents의 경우 butanol이 가장 높게 발생하였다.
연료전지 무인기 탑재용 수소발생기의 온도환경변화에 따른 성능평가를 수행하였다. 수소 저장 및 발생을 위해 화학수소화물 중 수소함량이 높고 저장성이 우수한 수소화붕소나트륨($NaBH_4$)을 연료로 사용하였으며, 촉매를 이용한 가수분해반응을 통해 수소를 발생하였다. 수소발생기의 온도환경변화를 위한 저온 및 고온 챔버를 각각 준비하였으며, 온도범위는 $-20^{\circ}C$에서 $60^{\circ}C$까지 $20^{\circ}C$의 간격으로 설정하였다. 20과 25wt.%의 $NaBH_4$ 용액 농도에서 수소발생기의 수소발생률과 반응기와 분리기의 온도변화를 측정하였다. 수소 발생률은 반응주기가 반복될수록 감소하였으며, 저온 환경에서는 높은 수소발생률을 보였지만, 고온 환경에서는 수소발생률이 급격히 감소하였다. 수소발생률의 감소는 촉매유실과 촉매표면의 $NaBO_2$ 도포가 원인으로 확인되었다.
수소 가스발생을 위한 마이크로 수소 발생기 개발에서 MEMS 공정을 이용하여 기판에 반응 유로를 위해 HAR(High Aspect Ratio) 구조물을 형성하고 Ru(ruthenium) 박막을 증착하여 수소 발생량을 측정하였다. Pyrex glass 기판상에 sand blast 방법으로 반응 구조물을 만들었으며, 그 위에 sputter system을 이용하여 Ru 박막을 $5500{\AA}$었다. 수소 발생량은 촉매 박막이 증착된 기판 재질과 기판의 표면 상태 그리고 마이크로 수소 발생기에 두께로 증착하였다. 반응 구조물의 전체 크기가 가로 2.0 cm, 세로 2.0cm의 면적에서 약 12.3 ml/min의 수소가 측정되 형성한 구조물의 형상에 의존하였다. Pyrex glass 기판을 사용하여 HAR로 반응 구조물을 형성한 경우에 단위 면적당 Ru 박반응 막의 반응 표면적이 증가되어 기존에 구조물을 형성하지 않은 평면 기판에 비교하여 약 5.5배 이상의 수소 발생이 증가하였다.
원자력발전소(원전)에서 발생 가능성이 거의 없지만, 그래도 핵연료의 용융을 가져오는 중대사고가 발생하면 다량의 수소가 발생한다. 즉, 노심이 노출됨에 따라, 노심은 과열되고 핵연료 피복재인 지르코늄이 수증기와 반응을 하여 산화되면서 수소를 생성하게된다. 원자로내에서 생성된 수소는 발생된 수소는, 원자로 냉각재계통(Reactor Coolant System, RCS)이 건전하다면 RCS내에 축적되고, RCS에 누설 경로가 있다면 격납건물로 방출되어 격납건물에 축적된다.(중략)
본 논문은 연료전지 UAV를 위한 고체 상태의 $NaBH_4$ 수소 발생 및 공급 시스템의 특성에 대해 기술하고 있다. 산을 이용하여 $NaBH_4$를 분해할 경우, 발생된 수소의 유량과 압력은 급격히 변화하게 된다. 공급 수소는 자체 가압식 반응기로 안정화 되었고, 수소의 안정화 방법에 대해 소개하였다. 영하조건에서 수소를 발생시키기 위해 묽은 염산을 프로필렌 글리콜 혼합 용액으로 희석하였다. 고체 상태 $NaBH_4$ 수소 발생 및 공급 시스템을 설계하였다. 수소 발생 시스템의 특성을 밝혀내기 위한 기본 구동 실험을 수행하였다.
셀룰로오스를 Ca(OH)2와 Ni(OH)2를 Pot에 넣고 동시에 밀링 공정을 실시한 후, 열을 가함으로써 수소를 얻었다. X-ray diffraction (XRD), thermogravimetry/ mass spectrometry (TG/MS), gas chromatography (GC) 장비를 이용해 수소 발생량 및 촉매의 역할에 관하여 실험하였다. 촉매 Ni(OH)2를 대신한 NiO 또는 Ni를 사용했을 경우 사용된 촉매에 따른 수소의 발생량의 차이를 보였는데 이는 촉매의 사이즈가 수소 발생량과 관련이 있음을 보여주었다. 한편, Ca(OH)2를 대신하여 Li(OH)를 사용하였을 때 수소 발생 온도가 약$400\sim500\;^{\circ}C$ 범위에서 $350\sim400\;^{\circ}C$의 범위로 낮아져 보다 낮은 온도에서 수소 회수가 가능하였다. 이때 발생한 CO와 CO2는 수 ppm정도로 적은 양이었다.
최근 소형 다기능, 고기능 전자장비의 개발로 인하여 고밀도 전원이 필요성이 대두되고 있다. 연료전지는 높은 전력 밀도를 가짐으로 인하여 소형 전원 장비에 가능성을 가지는 것으로 여겨지고 있다. 연료전지 중 특히 고분자 전해질 연료전지는 높은 전력밀도와 낮은 작동온도 등으로 인하여 이차전지의 자리를 대체할 수 있을 것으로 보여지지만 현재까지 연료 공급장치의 문제로 인하여 실용화되지 못하고 있다. 본 연구에서는 여러 가지 수소저장 물질 중에서 알칼리 붕소 수소화물을 이용하여 연료전지에 수소를 공급하고자 하며, 수소발생에 사용되는 촉매에 대한 연구를 진행하였다. 알칼리 붕소 수소화물의 수소발생 반응에 사용되는 촉매로는 Pt, Ru, Co, Ni 등이 사용되어질 수 있다. 이중에서 가장 수소발생 능력이 높은 촉매는 Ru이며, 비귀금속 촉매 중에는 Co가 높은 활성을 나타내었다. 본 연구에서는 Ru 촉매와 Co 촉매의 특성을 비교하였으며 연료전지에 수소를 공급할 수 있는 가능성을 확인하였다. Ru와 Co 촉매의 공통적인 특징은 알칼리 붕소화물인 NaBH$_4$의 농도가 높아질수록, 온도가 높아질수록 수소의 발생속도를 높이는 현상을 보였다. 또한 안정화제인 NaOH에 대하여, Ru의 경우는 농도가 높아질수록 수소발생 속도가 낮아졌으며, Co는 그 반대의 결과를 보였다. NaBH$_4$의 분해 반응으로 발생된 수소를 연료전지에 공급하여 2W급의 휴대폰용 연료전지를 구동할 수 있었다. 이로써 알칼리 붕소수소화물로부터 발생된 수소를 이용하여 안정적으로 연료전지를 구동할 수 있는 가능성을 확인하였다. 유류 분해정도를 파악하는 지시자로써 특정 무기 오염물질을 이용할 수 있을 가능성이 있으므로 좀더 이들 관계성에 대한 연구가 진행될 필요성이 있다고 판단된다.고 과학적으로 분석할 수 있는 방법이 될 수 있을 것으로 기대된다. 의미를 되새기는 것으로 짧은 연구를 시작하겠다. 등은 활성 값이 70% 이상으로 퇴적물 독성이 상대적으로 낮았다. 이중나선 DNA 함량은 28.4 % - 49%로 대조군에 비해서 감소가 크다. 대부분의 정점이 대조군의 30% 내외로 정점 간의 차이는 크지는 않다. 그러나 다른 측정자료와 같이 정점 22에서 18%로 최소치를 나타내고, 정점 2, 12에서 20% 내외의 값을 보인다. 종합적으로 볼 때 오염물질의 유입이 크고, 광양제철 인근 정점 들이 모두 다른 정점에 비해서 낮아서, 퇴적물 독성이 높은 정점으로 조사되었다.hiwo의 광합성 능력은 낮은 농도들에서는 대조구와 유사하였으나, 5 $\mu\textrm{g}$/l의 높은 농도에서는 초기에 매우 낮은 광합성 능력을 보이다가 시간이 경과하면서 대조군보다 더 높은 경향을 나타냈다. 이러한 결과는 식물플랑크톤이 benso[a]pyrene의 낮은 농도에서 노출될 때는 이 물질을 탄소원으로 사용할 가능성이 있음을 시사한다. 본 연구의 결과들은 연안해역에 benso[a]pyrene과 같은 지속성 유기오염물질이 유입되었을 때 내정여부에 따라 식물플랑크톤 군집내 종 천이와 일차생산력에 크게 영향을 미칠 수 있음을 시사한다.TEX>5.2개)였으며, 등급별 회수율은 각각 GI(8.5%), GII(13.4%), GIII(43.9%), GIV(34.2%)로 나타
유기성 폐기물을 이용하여 생물학적 수소생산 통합화 시스템 연구를 수행하였다. 통합화 시스템은 유기성폐기물의 전처리, 2단계 혐기발효 및 광합성 배양으로 구성된 생물학적 수소생산 공정, 초임계수 가스화 공정, 생산된 가스의 저장, 분리 및 연료전지를 이용한 전력 생산으로 구성되었다. 실험에 사용된 유기성 폐자원은 식품공장 폐수, 과일폐기물, 하수슬러지이며, 전처리는 폐기물에 따라 열처리 및 물리적 처리를 하였으며, 전처리된 시료는 생물학적 수소생산 공정에 직접 적용되었다. Clostridium butyricum 및 메탄 생성조에서 발생하는 하수슬러지중의 미생물 복합체는 수소생산 혐기 발효공정에 사용되었으며, 광합성 수소생산 미생물인 홍색 비유황 세균은 광합성 배양에 사용되었다. 생물학적 공정에서 발생하는 미생물 슬러지는 초임계수 가스화 공정으로 수소를 발생하였으며, 슬러지 중의 COD를 저하시켰다. 생물학적 공정 및 초임계수 가스화 공정에서 발생하는 수소는 가스탱크에 가입상태로 저장한 후, 95%순도로 분리하였으며, 정제된 수소는 연료전지에 연결하여 전력 생산을 하였다.
오늘날 화석연료의 다량 사용에 의한 환경오염이 지구온난화를 가속시키고 기상이변을 일으키며 지구생태계에 심각한 영향을 미치고 있다. 수소는 이러한 환경문제를 근본적으로 해결해 줄 지속 가능한 그린에너지로 생각되고 있다. 본 연구는 결합구조가 다른 메탄올 및 에탄올의 개질을 통한 수소발생을 위해 실린더형 배리어 방전형의 반응기를 제작하였다. 반응기에 인가되는 고전압의 크기, 메탄올 및 에탄올 농도 및 캐리어 가스(N2) 유량 등의 변화에 따른 반응기의 방전특성과 수소발생 특성을 측정하고 화학구조에 따른 수소발생 영향을 분석하였다. 수소발생은 인가전압의 증가에 따라 선형적으로 증가하였고 메탄올의 경우가 많았다. 이는 메탄올과 에탄올의 결합구조와 관련이 있는 것으로 생각된다. 수소발생 에너지효율은 에탄올의 경우 인가전압이 증가하여 방전전력이 증가할수록 전체적으로 감소하지만 메탄올의 경우 전압 22[kV](peak-to-peak)를 인가한 경우 가장 에너지 효율이 높게 나타났다.
수소를 생산하는 미생물은 크게 광합성 세균(photosynthetic bacteria), 혐기성세균(non-photosynthetic anaerobic bacteria), 조류(algae) 등으로 구분되고, 이들의 수소 생성 기작, 사용가능기질 및 수소 발생량은 상당한 차이가 있다. 광합성세균은 Rhodospirillaceae, Chromatiaceae 및 Chlorobiaceae로 구분되며, 이는 각각 홍색비유황세균(purple non-sulfur bacteria), 홍색유황세균(purple sulfur bacteria), 녹색유황세균(green sulfur bacteria)으로 통칭된다. 혐기성 세균은 절대 또는 통성혐기세균중 일부가 수소생산에 관여하며, 조류는 녹조류(green algae)와 남조류(blue-green algae, cyanobacteria)가 알려져 있다. 생물학적 수소생산 기술은 (1) 녹조류(green algae)가 광합성 메카니즘에 의해 수소를 생산하는 직접 물 분해 수소생산(direct bio-photolysis) (2) 광합성 작용에 의해 물을 분해하여 산소를 발생하고, 동시에 공기 중 이산화탄소를 고정하여 고분자 저장물질로 균체 내에 저장한 후 혐기 발효 또는 광합성 발효에 의해 수소를 발생하는 간접 물 분해 수소생산(indirect bio-photolysis or two stage photolysis) (3) 빛이 존재하는 혐기상태 배양 조건에서 홍색 세균에 의한 광합성 발효(photo-fermentation) 또는 (4) 광이 존재하지 않는 조건에서 혐기 미생물에 의해 수소와 유기산을 내는 혐기 발효(dark anaerobic fermentation) (5) 균체 외(in virro) 수소 발생 (6) 일산화탄소 가스 전환 반응(microbial gas shift reaction)에 의한 수소 생산 기술로 구분할 수 있다. 물로부터 생물학적 기술에 의한 수소생산은 공기 중의 이산화탄소를 고정하고, 수소와 산소를 발생하는 원천기술로써 오래 전부터 미국, 유럽에서 태양에너지를 이용하는 광합성 미생물의 분리, 개선 및 반응기에 관한 연구가 축적되어 왔으며, 유기물 즉 바이오매스로부터 혐기 및 광합성 발효를 연속적으로 적용하는 기술은 비교적 최근에 일본을 비롯한 유기성 폐기물이 많은 국가에서 수소에너지 생산과 유기성 폐기물 처리라는 두 가지 목적에 부합하는 연구로써 활발히 진행되고 있다. 유기성 폐기물이나 폐수와 같은 수분함량이 높은 바이오매스는 대부분이 매립처리 되는 실정이지만 높은 수분 함량 때문에 매립 시 발생하는 침출수는 환경오염의 주범으로 가까운 장래에는 매립도 금지될 전망이다. 이와 같은 수소에너지 생산기술과 이용시스템 개발은 화석연료 사용을 최소화 할 수 있으며, 국내에서 다량 발생하는 유기성 폐기물을 이용한 에너지 생산으로 자원 강대국 입지에 설 수 있다. 미생물에 의한 수소생산 기술은 청정에너지 생산과 아울러, 동시에 산소 발생, 공기 중 이산화탄소 고정, 식품공장 폐수 및 음식쓰레기와 같은 유기성 폐기물 처리 등 환경에 이로운 방향으로 진행될 뿐만 아니라, 미생물 자체가 갖는 생물 산업성도 높아서 비타민류, 천연색소, 피부암 치료제등의 고부가가치 의약품 생산도 활성화할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.