• Title/Summary/Keyword: 수소동위 원소

Search Result 190, Processing Time 0.029 seconds

열처리조건에 따른 백금담지 고분자촉매의 특성연구

  • 백승우;안도희;이한수;강희석;이성호;김광락;정흥석
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.396-400
    • /
    • 1997
  • 중수형 발전소에서 삼중수소 제거나 중수분리와 관련된 수소동위원소 교환반응에 이용되는 백금담지 고분자촉매제조시 환원과정 이전의 열처리 조건이 백금분산도에 미치는 영향을 관찰하였다. 고분자 담체(SDBC)에 함침법을 이용하여 백금을 담지시켰으며, 8$0^{\circ}C$의 공기중에서 그리고 15$0^{\circ}C$의 산소흐름하에서 열처리하여 제조한 Pt/SDBC촉매의 열적 안정성을 TGA와 BET 실험결과로부터 확인할 수 있었다. 백금담지량이 커지면 백금분산도가 감소하였으며, 가능한 한 고온의 산소로 열처리하면 고분자촉매의 백금분산도가 향상됨을 수소흡착 실험을 통하여 입증하였다.

  • PDF

Environmental Isotope - Aided studies on Sea Water contamination of Eastern Coastal Aquifer in Cheju Island (환경동위원소(環境同位元素)를 이용(利用)한 제주동부지역(濟州東部地域) 대수층(帶水層)의 해수오염(海水汚染)에 관(關)한 연구(硏究))

  • Ahn, Jong-Sung;Kim, Sun-Joon;U, Zang-Kual;Song, Sung-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.1
    • /
    • pp.26-40
    • /
    • 1992
  • Cheju Island formed by Quarternary volcanism provides highly permeable hydrogeological environment. To meet the increasing demand of water in the island, many groundwater wells have been developed. The environmental isotopes(oxygen-18, deuterium, tritium) and chemical analysis of water samples from the eastern part of the island were carried out to ascertain whether groundwater in the eastern part of the island was contaminated by sea water. The result of tritium analysis indicated fast infiltration of meteoric water into underground and rapid mixing process between rain water and groundwater. The results of oxygen-18 and deuterium analysis demonstrated that most of the wells in the eastern part of the island were influenced by sea water intrusion. Chemical analysis of water samples revealed that most groundwater in study area were classified into Na-Cl type and showed high chloride/bicarbonate ratios. Sea water intrusion in the northeastern part of the island has proceeded at least 3 km within the coastaline, and in the south eastern part about 700m.

  • PDF

Interpretation of Groundwater System and Contamination by Water-Quality Monitoring in the Daejung Watershed, Jeju Island (지하수 수질 관측에 의한 제주도 대정수역의 지하수계 및 오염특성 분석)

  • 우남칠;김형돈;이광식;박원배;고기원;문영석
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.485-498
    • /
    • 2001
  • This study was objected to identify the temporal and spatial variations oi groundwater quality and contamination using monthly groundwater monitoring data collected from 30 wells in Daejung watershed, Jeju Island. Water samples were analyzed for major cations. anions, and environmental isotopes including $^{18}0-H_2$O,$^{2}H-H_2$O and$^{15}$ N-NO$_3$The groundwater represented mostly Na(Mg)-HCO$_3$ type, with local change toward Ca-HCO$_3$ type and Na-Cl type. Groundwater quality depends upon various factors such as the local groundwater flowpaths, input of surface contaminants with recharge events, and sea-water intrusion along the coastal area. Nitrate contamination changed temporally according to recharge events and spatially. $\delta$$^{18}$ O-$\delta$$_2$H data for monthly sampled groundwaters showed distinctive clusters, implying that groundwater was originated from independent precipitation, and subsequently recharged very fash. Using$\delta$$^{15}$ N-NO$_3$ data, major sources of nitrate and its areas of influence could be identified. The areas under influence of livestock farms showed relatively high NO$_3$-N concentrations and$\delta$$^{15}$ N values higher than 5$\textperthousand$. The agricultural areas in southeastern part showed very high concentrations of NO$_3$-N with the $\delta$$^{15}$ N values of lower than 5$\textperthousand$.

  • PDF

Discussions about Sample Preparation Techniques for Oxygen and Hydrogen Isotope Analysis (산소와 수소 동위원소 분석을 위한 시료 전처리 기술에 대한 고찰)

  • Lee, Kwang-Sik;Lee, Insung
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.207-214
    • /
    • 1996
  • For many years oxygen and hydrogen isotope analysis have been used as one of the most valuable research tools to investigate many geological processes. There are many sample preparation techniques of oxygen and hydrogen isotope analysis for various geological samples. We introduce here several important sample preparation techniques for oxygen and hydrogen isotope analysis and discuss the problems of each method in detail.

  • PDF

Characteristics of Groundwater Contamination Caused by Seawater Intrusion and Agricultural Activity in Sacheon and Hadong Areas, Republic of Korea (해수침투와 농업활동에 의한 사천-하동 해안지역 지하수의 오염 특성)

  • Kim, Hyun-Ji;Hamm, Se-Yeong;Kim, Nam-Hoon;Cheong, Jae-Yeol;Lee, Jeong-Hwan;Jang, Sung
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.575-589
    • /
    • 2009
  • Groundwater has been extracted for irrigation in Sacheon-Hadong area, which is close to the South Sea. We analyzed chemical components of groundwater to examine the effects of seawater intrusion and agricultural activities in the study area. Most groundwater samples displayed the Na/Cl concentration ratios similar to that of seawater (0.55) with an increasing tendency of electrical conductivity ($227-7,910\;{\mu}S/cm$) towards the coast. In addition, statistical interpretation of the cumulative frequency curves of Cl and $HCO_3$ showed that 30.1% of the groundwater samples were highly affected by seawater intrusion. Groundwaters in the study area mostly belonged to the Ca-Cl and Na-Cl type, demonstrating that they were highly influenced by seawater intrusion and cation exchange. The result of oxygen-hydrogen isotope analysis demonstrated slightly higher $\delta^{18}O$ ((-8.53)-(-6.13)‰) and ${\delta}D$ ((-58.7)-(-43.7)‰) comparing to mean oxygen-hydrogen isotope ratios in Korea. As a result of nitrogen isotope analysis, the $\delta^{15}N-NO_3$ values ((-0.5)-(19.1)‰) indicate two major sources of nitrate pollution (organic nitrogen in soil and animal and human wastes) and mixed source of the two. However, denitrification may partly contribute as a source of nitrogen. According to factor analysis, four factors were identified among which factor 1 with an eigenvalue of 6.21 reflected the influence of seawater intrusion. Cluster analysis indicated the classification of groundwater into fresh, saline, and mixed ones.

Geochemical and Geophysical Characteristics of Shallow Gases in the Deep Sea Sediments, Southwestern Ulleung Basin (울릉분지 남서부 심해저 퇴적층에 분포하는 천부 가스의 지화학 및 지구물리 특성)

  • 김일수;이영주;유동근;류병재
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.149-157
    • /
    • 2003
  • Deep sea core samples were taken in the southwestern part of the Ulleung Basin in order to characterize the properties of shallow gases in the sediment. Amount of shallow gases in the sediments were calculated by head space techniques, and chemical and isotopic compositions of hydrocarbon gases were analyzed. Geochemical analyses were carried out on the gas bearing sediments to find out relationship between natural gas contents and organic characteristics of the sediments. Seismic characteristics of shallow gases in the sediments were also examined in this study. The amount of the hydrocarbon gases in the sediments range from 0.01% to 11.25%. Calculation of volume of gas per volume of wet sediment varies from 0.1 to 82.0 ml HC/L wet sediment. Methane consists 98% of the total hydrocarbon gases except for two samples. Based on the methane content and isotopic composition$(\delta^{13}c)$: -94.31$\textperthousand$~-55.5$\textperthousand$), the hydrocarbon gases from the sediments are generated from bacterial activities of methanogenic microbes. Contents of hydrocarbon gases are variable from site to site. Volume of shallow gases in the sediments shows no apparent trends vs. either characteristics of organic matter or particle sizes of the sediments. Gas concentration is high in the area of seismic anomalies such as blanking zone or chimney structures in the section. Physicochemically the pore water and the formation water systems are saturated with gases in these areas. Concentration of hydrocarbon gases in the sediments in these area shows favorable condition for generation of gas hydrate, as far as the other conditions are satisfied.

KSTAR 연료주입계 Piezoelectric Valve 및 제어기 개발

  • Song, Jae-In;Kim, Yeong-Ok;Kim, Gwang-Pyo;Chu, Yong;Park, Gap-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.205-205
    • /
    • 2012
  • Korea Superconducting Tokamak Advanced Research (KSTAR) 장치는 국내 유일의 초전도 자석을 이용한 핵융합 연구 장치로서 초고온의 플라즈마를 생성하여 차세대 에너지원인 핵융합 에너지를 획득하는 것을 목표로 두고 있다. 플라즈마를 생성부터 유지하기 위해서는 수소 동위원소를 토카막 내부로 공급해 주어야 하는데 이러한 수소동위원소를 "연료"라 부르며, 이 연료를 토카막 내부로 공급해 주는 시스템을 연료주입 시스템(Fueling System)이라고 한다. KSTAR에서는 토카막 내부로 고속의 연료 주입이 필요하고 정밀한 양의 연료를 공급하는 밸브를 사용하여야 하며, 이러한 밸브를 제어 할 수 있는 제어기를 필요로 한다. 위의 사항에 적합한 피에조 밸브(Piezoelectric Valve)는 2 msec 이내의 개폐시간과 500 Torr ${\ell}$/s 이상의 유량을 흘려줄 수 있는 피에조 밸브로 압전소자에 가해지는 전압(0~250 V)에 따라 변위의 양에 비례하여 연료가 진공용기 내로 유입된다. 압전소자의 변위는 최대 140 ${\mu}m$로 최적화되어 있어야 하며, 정전용량(Capacitance)는 30~40 nF이어야 한다. 또한 소자에 힘(Force)를 가해 최대 7 N으로 136 ${\mu}m$의 변위를 가진 소자를 사용해야 한다. 피에조 밸브의 특성으로는 아날로그 신호로 작동이 되어야 하며, 유량신호를 피드백하여 밸브의 구동 전압을 정밀하게 제어 되어야 한다. 피드백 제어를 위해 압력센서는 XCS-190 Series를 사용하여 낮은 유량에서도 민감하게 반응하도록 제작하였으며, 고전압이 유기 되었을 때 제어기를 보호하기 위한 정션박스를 설치하였다. 밸브 제어기는 피에조 밸브의 개방 속도를 높이기 위해 밸브 구동 전압을 순간적으로 높이는 POP 전압을 생성하는 기능과 유량 신호를 피드백해서 밸브 구동 전압을 정밀 제어 하는 기능을 가지고 있다. 제어장치는 아날로그 및 디지털 제어회로의 전원용 +15 V DC와 밸브 구동용 +250 V DC 출력용의 전원 공급 장치(Power supply unit), 펄스 및 트리거 신호를 생성하는 Master Programmer unit), Pop 전압과 피드백의 중요한 기능을 수행하는 Valve controller unit로 제작 되었다. 피에조 밸브와 제어기는 상호 작용하여 동작을 원활히 할 수 있도록 특성 실험을 진행하여야 하며, 진공상태에서 Lack의 유무를 확인하여야 한다. 현재 개발 제작된 밸브의 진공누설시험 및 특성실험을 진행하고 있으며, KSTAR 5차 캠페인에 적용할 계획이다.

  • PDF

A Study on the Recharge Characteristics of Groundwater in Subcatchment including Spring Water Wells (샘물 취수정이 위치한 소유역의 지하수함양 특성에 관한 연구)

  • Son, Doo Gie;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.303-314
    • /
    • 2020
  • Bottled water companies submit monthly hydrologic data including periodical environmental effects investigation, daily water production capacity, water production, water level, water chemistry (pH, EC, temperature) per hour and strictly manage groundwater by periodical analyses. Thus few problems concerning drawdown due to excess intake of groundwater take place. Nevertheless, bottled water companies are imprinted as a contribution to civil affairs resulted regarding groundwater near the companies. Therefore, a new method is required during water balance analysis in environmental effects evaluation, which should be compatible with the evaluation by hydrologic experts as well more accessible to non-experts. In this study, water level of surface water and recharge rate in subcatchment where water production wells are located were measured and monthly baseflow rates were separated from normal streams. Besides, recharge properties of groundwater and surface water in the same catchment area were estimated using analyses of oxygen and hydrogen isotopes in groundwater (production well), surface water, and rainfall.

Seasonal Variation of Surface Water Quality in a Catchment Contaminated by $NO_3-N$ (질산성 질소로 오염된 소유역 하천 수질의 계절 변화)

  • Kim Youn-Tae;Woo Nam-Chil;Lee Kwang-Sik;Song Yun-Goo
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.20-27
    • /
    • 2005
  • The seasonal variation of water quality was studied in the Hwabongcheon. It runs though a small catchment where shallow groundwater was contaminated with $NO_3-N$ by intensive livestock facilities. A direct inflow of animal waste and incoming of contaminated groundwater affected its water quality. In the dry season, an important factor of water quality in the Hwabongcheon was direct inflow of animal waste. In the wet season, concentrations of $NO_3-N$ in the Hwabongcheon were elevated in spite of being diluted by precipitation. It could be explained by the effect of increased incoming of contaminated groundwater and showed by oxygen and hydrogen isotope values. $NO_3-N$ concentration in the Cheongmicheon was lower than that in the Hwabongcheon, so it increased next a junction. This effect was intense in wet season because $NO_3-N$ concentration in the Hwabongcheon was high.

Storage and Delivery of Hydrogen Isotopes (삼중수소 저장기술)

  • Chung, Hong-Suk;Chung, Dong-You;Koo, Dae-Seo;Lee, Ji-Sung;Shim, Myung-Hwa;Cho, Seung-Yon;Jung, Ki-Jung;Yun, Sei-Hun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.372-379
    • /
    • 2011
  • A nuclear fusion fuel cycle plant is composed of various subsystems such as a hydrogen isotope storage and delivery system, a tokamak exhaust processing system, and a hydrogen isotope separation system. Korea shares in the construction of its ITER fuel cycle plant with the EU, Japan, and the US, and is responsible for the development and supply of the storage and delivery system. The authors thus present details on the development status of hydrogen isotope storage technologies for nuclear fusion fuel cycle plants. We have developed various hydride beds of different size. We have realized a hydrogen delivery rate of 12.5 $Pam^3/s$ with a typical 1242g-ZrCo bed.