Characteristics of Groundwater Contamination Caused by Seawater Intrusion and Agricultural Activity in Sacheon and Hadong Areas, Republic of Korea

해수침투와 농업활동에 의한 사천-하동 해안지역 지하수의 오염 특성

  • Kim, Hyun-Ji (Division of Earth Environmental System, Pusan National University) ;
  • Hamm, Se-Yeong (Division of Earth Environmental System, Pusan National University) ;
  • Kim, Nam-Hoon (Dohwa Consulting Engineers CO., Ltd.) ;
  • Cheong, Jae-Yeol (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Jeong-Hwan (Division of Earth Environmental System, Pusan National University) ;
  • Jang, Sung (Environmental Geology Team, Gyeongsangnam-Do office, Korea Rural Corporation)
  • 김현지 (부산대학교 지구환경시스템학부) ;
  • 함세영 (부산대학교 지구환경시스템학부) ;
  • 김남훈 (도화종합기술공사 지반부) ;
  • 정재열 (부산대학교 지구환경시스템학부) ;
  • 이정환 (부산대학교 지구환경시스템학부) ;
  • 장성 (한국농어촌공사 경남지역본)
  • Published : 2009.12.28

Abstract

Groundwater has been extracted for irrigation in Sacheon-Hadong area, which is close to the South Sea. We analyzed chemical components of groundwater to examine the effects of seawater intrusion and agricultural activities in the study area. Most groundwater samples displayed the Na/Cl concentration ratios similar to that of seawater (0.55) with an increasing tendency of electrical conductivity ($227-7,910\;{\mu}S/cm$) towards the coast. In addition, statistical interpretation of the cumulative frequency curves of Cl and $HCO_3$ showed that 30.1% of the groundwater samples were highly affected by seawater intrusion. Groundwaters in the study area mostly belonged to the Ca-Cl and Na-Cl type, demonstrating that they were highly influenced by seawater intrusion and cation exchange. The result of oxygen-hydrogen isotope analysis demonstrated slightly higher $\delta^{18}O$ ((-8.53)-(-6.13)‰) and ${\delta}D$ ((-58.7)-(-43.7)‰) comparing to mean oxygen-hydrogen isotope ratios in Korea. As a result of nitrogen isotope analysis, the $\delta^{15}N-NO_3$ values ((-0.5)-(19.1)‰) indicate two major sources of nitrate pollution (organic nitrogen in soil and animal and human wastes) and mixed source of the two. However, denitrification may partly contribute as a source of nitrogen. According to factor analysis, four factors were identified among which factor 1 with an eigenvalue of 6.21 reflected the influence of seawater intrusion. Cluster analysis indicated the classification of groundwater into fresh, saline, and mixed ones.

연구지역인 사천-하동지역은 농업지역으로서 오랫동안 농업용 지하수를 사용하여 왔으며, 또한 남해에 인접해 있다. 본 연구에서는 해수침투와 농업활동에 의한 오염을 고찰하기 위해 연구지역의 지하수 화학성분을 분석하였다. 대부분의 지하수 시료들은 해안으로 갈수록 전기전도도($227{\sim}7,910\;{\mu}S/cm$)가 증가하는 경향을 보이며 해수(0.55)와 비슷한 Na/Cl 농도를 보였다. 또한, Cl과 $HCO_3$ 농도 확률누적곡선의 통계학적 해석에 의하면, 연구지역 지하수의 30.1%가 해수의 영향을 많이 받은 영역에 속하는 것으로 나타났다. 지하수 유형은 Ca-Cl과 Na-Cl 형을 나타냈으며, 이는 해수의 영향과 이에 수반된 양이온교환을 지시한다. 수소 산소동위원소 분석 결과, 사천-하동 지역 지하수의 산소 수소 동위원소비는 $\delta^{18}O$가 -8.53~-6.13‰, ${\delta}D$가 -58.7~-43.7‰로서 우리나라 전체 평균 산소 수소 동위원소비에 비해서 약간 더 무거운 경향을 보인다. 질소동위원소 분석 결과, $\delta^{15}N-NO_3$값이 -0.5~19.1‰의 범위로 나타나 질산염 오염의 기원은 주로 토양의 유기질소와 분뇨 기원 그리고 이들의 혼합기원으로 나타났다. 그러나, 부분적으로는 탈질효과도 있는 것으로 보인다. 요인분석 결과 4개의 요인이 도출되었으며, 전체 분산을 가장 많이 설명하는 요인 1 (고유치 6.21)은 해수침투의 영향을 지시한다. 군집분석 결과, 연구지역의 지하수는 담수, 담수-해수의 혼합지하수로 분류된다.

Keywords

References

  1. An, J.-S., Kim, J.-S., Han, J.-S., Airey, P. and Payne, B.(1983) Environmental isotope-aided studies on relationshipbetween groundwater and surfacewater inthe region Han river. Magazine of Korea WaterResources Association, v.16, p.245-257
  2. Appelo, C.A.J. and Postma, D. (1999) Variable dispersivityin a column experiment containing $MnO_{2}$ andFeOOH-coated sand. Journal of Contaminant Hydrology,v.40, p.95-106 https://doi.org/10.1016/S0169-7722(99)00049-2
  3. Böhlke, J.K. and Denver, J.M. (1995) Combined use ofgroundwater dating, chemical, and isotope analyses toresolve the history and fate of nitrate contaminationin two agricultural watersheds, Atlantic coastal plain,Maryland. Water Resources Research, v.31, p.2319-2339 https://doi.org/10.1029/95WR01584
  4. Burns, D.A. and Kendall, C. (2002) Analysis of $\delta_{15}$N and $\delta_{18}$O to differentiate $NO_{3}$−sources in runoff at twowatersheds in the Catskill mountains of New York.Water Resources Research, v.38, p.1051 https://doi.org/10.1029/2001WR000292
  5. Chae, G.T., Kim, K., Yun, S.T., Kim, K.H., Kim, S.O.,Choi, B.Y., Kim, H.S. and Rhee, C.W. (2004) Hydrogeochemistryof alluvial groundwaters in an agriculturalarea of Korea: an implication for groundwatercontamination susceptibility. Chemosphere, v.55, p.369-378 https://doi.org/10.1016/j.chemosphere.2003.11.001
  6. Chae, G.T., Yun, S.T., Mayer, B., Choi, B.Y., Kwon, J.S.and Yu, S.Y. (2009) Hydrochemical and stable isotopicassessment of nitrate contamination in an alluvialaquifer underneath a riverside agricultural field. AgriculturalWater Management, v.96, p.1819-1827 https://doi.org/10.1016/j.agwat.2009.08.001
  7. Chae, G.T., Yun, S.T., Kim, K. and Mayer, B. (2006)Hydrogeochemistry of sodium-bicarbonate type bedrockgroundwater in the Pocheon spa area, SouthKorea: water-rock interaction and hydrologic mixing.Journal of Hydrology, v.321, p.326-343 https://doi.org/10.1016/j.jhydrol.2005.08.006
  8. Choi, S.-W., Lee, C.-H. and Jeong, H.-C. (1998) Environmentalgeochemistry of soil and groundwater inthe Kongjudaekeum mine area, Korea. Journal of Korea Earth Science Society, v.19, p.549-564
  9. Choi, Y.-K. and Yoo, B.-H. (1969) Explanatory text andgeological map of Sacheon sheets (1:50,000). KoreaInstitute of Geoscience and Mineral Resources
  10. Choi, W.-J., Han, G.-H., Ro, H.-M., Yun, S.-H. and Lee, S.-M. (2002) Evaluation of nitrate contamination sourcesof unconfined groundwater in the North Han Riverbasin of Korea using nitrogen isotope ratios. GeosciencesJournal, v.6, p.47-55 https://doi.org/10.1007/BF02911335
  11. Choo, S.-H. and Chi, S.-J. (1992) Stable isotope study onsurface and ground waters. Korea Institute of Geoscienceand Mineral Resources, 47p
  12. Choung, C.-C., U, Z.-K., An, J.-S. and Song, S.-J.(1986) Environmental Isotope-Aided Studies on Waterresources in the Region of Cheju (II). Cheju AppliedRadioisotope Research Institute Annual Report, v.2,p.66-79
  13. Craig, H. (1961) Isotopic variation in meteoric waters.Science, v.33, p.1702-1703
  14. Craig, H. and Gorden, L. (1965) Deuterium and oxygen-18 variation in the ocean and the marine atmosphere,In: E. Tongiorgi, (Ed.), Stable Isotopes in OceanographicStudies and Paleotemperatures. Spoleto, Italy,9-130p
  15. Epstein, S. and Mayeda, T.K., (1953) Variation of $^{18}O$ contentof waters from natural sources. Geochimica etCosmochimica Acta, v.4, p.213-224 https://doi.org/10.1016/0016-7037(53)90051-9
  16. Freyer, H.D. and Aly, A.J.M. (1974) $^{15}O$ studies on identifyingfertilizer excess in environmental systems. In:Isotope ratios as pollutant source and behavior indicators,IAEA, Vienna, p.21-33
  17. Hahn, J.-S. (1983) Introduction of Hydrogeology. Pakyoungsa,p.511
  18. Hahn, J.-S., Ahn, J.-S. and Lee, C.-K. (1984) Studies onIsotope Hydrology in South Korea. The Journal of theGeological Society of Korea, v.20, p.72-84
  19. Kendall C. (1998) Tracing nitrogen sources and cycling incatchment. In: Isotope tracers in catchment hydrology,Kendall, C. and McDonnell, J.J. (eds). ElsevierAmsterdam, p.519-576
  20. Kim, C.-S., Kim, K.-S., Bae, D.-S. and Song, S.-H. (1997)Hydrogeological Characteristics of Seawater Intrusionon the Coastal Area. Journal of the Korean Societyof Groundwater Environment, v.4, p.61-72
  21. Kim, H.-D., Woo, N.-C. and Choi, M.-J. (1998) Groundwaterquality and contamination in Dukpyung area.Korean Society of Soil and groundwater Environment,v.5, p.141-147
  22. Kim, I.-S., Kang, H.-C. and Lee, H.-K. (1993) Palaeomagnetismof Early Cretaceous sedimentary Rocks inChingyo-Sach'n Aream couthwestern KyongsangBasin. Journal of Korean Institute of Mining Geology,v.26, p.519-539
  23. Kim, J.-H., Lee, J.-S., Kim, B.-Y., Hong, S.-G. and Ahn,S.-K. (1999) Analysis of Ground Water used for Agriculturein Kyonggi Province. Korean Journal of EnvironmentalAgriculture, v.18, p.148-154
  24. Kim, K,-H. and Nakai, M. (1981) A study on hydrogen,oxygen and sulfur isotopic ratios of the hot springwater in South Korea. Geochemistry Journal, v.15,p.6-16
  25. Kim, K.-H. and Nakai, M. (1988) Isotopic compositions ofprecipitations and groundwaters in South Korea. Journal of Geological Society of Korea, v.24, p.37-46
  26. Kim, K.-H., Yun, S.-T., Chae, G.-T., Choi, B.-Y., Kim, S.-O., Kim, K.-J., Kim, H.-S. and Lee, C.-W. (2002)Nitrate contamination of alluvial groundwater in theKeum River watershed area: source and behaviors ofnitrate, and suggestion to secure water supply. TheJournal of Engineering Geology, v.12, p.471-484
  27. Kim, K.-H. (1981) Geochemistry. Pakyoungsa. p.443
  28. Kim, N.-J. and Kang, P.-J. (1965) Explanatory text andgeological map of Jingyo sheets (1:50,000). KoreaInstitute of Geoscience and Mineral Resources
  29. Kim, O.-B. and Park, H.-Y. (1997) Environmental geochemistryfor the Estimation of groundwater contaminationby sea-water intrusion. The Korean Society for GeosystemEngineering, v.34, p.548-558
  30. Kim, W.-S. and Jeong, J.-G. (1997) Mineralization of titaniumin hadong area. The Korean Society for GeosystemEngineering, p.38-42
  31. Kim, Y.-T. and Woo, N.-C. (2003) Nitrate contamination ofshallow groundwater in an agricultural area havingintensive linestock facilities. Korean Society of Soiland groundwater Environment, v.8, p.57-67
  32. Ko, K.-S., Ahn, S.S., Suk, H.J., Lee, J.S. and Kim, H.-S.(2008) Hydrogeochemistry and statistical analysis ofwater quality for small potable water supply system inNonsan area. Korean Society of Soil and GroundwaterEnvironment, v.13, p.72-84
  33. Lee, S.-T., Cho, J.-S., Lee, H.-J., Sohn, B.-K., Jung, Y.-K.and Heo, J.-S. (1998) Ground water pollution status ofagricultural water source of greenhouse area in Gyeongnam.Journal of the Korean Environmental Sciences Society, v.7, p.531-539
  34. Madison, R.J. and Brunett, J.O. (1985) Overview of theoccurrence of nitrate in ground water of the UnitedStates, in National Water Summary 1984; Hydrologicevents, selected water-quality trends, and groundwaterresources. U.S. Geological Survey Water-SupplyPaper 2275, p.93-105
  35. Mariotti, A., Landreau, A., and Simon, B. (1988) $^{18}O$ isotopebiogeochemistry and natural denitrification processin groundwater application to the chalk aquifer ofnorthern France. Geochimica et Cosmochimica Acta,v.52, p.1869-1878 https://doi.org/10.1016/0016-7037(88)90010-5
  36. Mayer, B., Boyer, E.W., Goodale, C., Jaworski, N.A.,Breemen, N.V., Howarth, R.W., Seitzinger, S., Billen,G., Lajtha, K., Nadelhoffer, K., Dam, D.V., Hetling,L.J., Nosal, M. and Paustian, K. (2002) Sources ofnitrate in rivers draining sixteen watersheds in thenorthern U.S.: Isotopic constrains. Biogeochemistry,v.57-58, p.171-197
  37. McMahon, P.B. and Bohlke, J.K. (1996) Denitrificationand mixing in a stream-aquifer system: effects onnitrate loading to surface water. Journal of Hydrology,v.186, p.105-128 https://doi.org/10.1016/S0022-1694(96)03037-5
  38. Mengis, M., Schiff, S.L., Harris, M., English, M.C.,Arvena, R., Elgood, R.J. and MacLean, A. (1999) Multiplegeochemical and isotopic approaches for assessingground water NO3−elimination in a riparian zone.Ground Water, v.37, p.448-457 https://doi.org/10.1111/j.1745-6584.1999.tb01124.x
  39. Michalski, G., Meixner, T., Fenn, M., Hernandez, L., Sirulnik,A., Allen, E. and Thiemens, M. (2004) Tracingatmospheric nitrate deposition in a complex semiaridecosystem using $\Delta^{17}O$. Environmental Science andTechnology, v.38, 2175-2181 https://doi.org/10.1021/es034980+
  40. Min, J.-H., Yun, S.-T., Kim, K, Kim, H.-S., and Kim, D.-J. (2003) Geologic controls on the chemical behaviorof nitrate in riverside alluvial aquifers, Korea. Hydrological Processes, v.17, p.1197-1211 https://doi.org/10.1002/hyp.1189
  41. Ministry of Agriculture and Korea Rural Corporation(2007) Report on agricultural groundwater managementin Sapo-Sayong area (Sacheon City). p.205
  42. Ministry of Agriculture and Korea Rural Corporation(2008) Report on agricultural groundwater managementin Hageum-Hajeok area (Hadong-Gun). p.276
  43. Mirza, M.M.Q. (2004) The Ganges water diversion: environmentaleffects and implications. Springer, p.93-95
  44. Morrison, J., Brockwell, T., Merren, T., Fourel, F. andPhillips, A.M. (2001) On-line high precision stablehydrogen isotopic analyses on nanoliter water samples.Analytical Chemistry, v.73, p.3570-3575 https://doi.org/10.1021/ac001447t
  45. Na, C.-K. and Son, C.-I. (2005) Groundwater quality andpollution characteristics at Seomjin River basin: pollutionsource and risk assessment. Korea Society of Economic and Environmental Geology, v.38, p.261-272
  46. Nam, G.-Y., You, H.-S. and Lee, J.-D. (1989) Geologicalreport of the Hadong sheet. Korea Institute of Geoscienceand Mineral Resources
  47. Pardo, L.H., Kendall, C., Pett-Ridge, J. and Chang, C.C.Y.(2004) Evaluating the source of streamwater nitrateusing $\delta^{15}N$ and $\delta^{18}N$ in nitrate in two watersheds inNew Hampshire, USA, Hydrological Processes. v.18,p.2699-2712 https://doi.org/10.1002/hyp.5576
  48. Park, H.-G., Kim, D.-M., Oh, S.-J., Teom, E.-H. and Kim,K.-M. (2007) The Characteristics of Potable WaterQuality in West Gyeong-nam. Korean Society of Environmental Engineers, p.114
  49. Park, S.C., Yun, S.T., Chae, G.T., Yoo, I.S., Shin, K.S.,Heo, C.H. and Lee, S.K. (2005) Regional hydrochemicalstudy on salinization of coastal aquifers,western coastal area of South Korea. Journal ofHydrology, v.313, p.182-194 https://doi.org/10.1016/j.jhydrol.2005.03.001
  50. Revelle R. (1941) Criteria for recognition of sea water ingroundwater. Transaction of American GeophysicalUnion, v.22, p.593-597 https://doi.org/10.1029/TR022i003p00593
  51. Shin, I.-H., Park, C.-Y., Ahan, K.-S. and Jeong, Y.-J. (2002)Hydrogeochemistry of groundwaters at the GogumIsland area in Jeonnam, Korea. Journal of Korean Earth Science Society, v.23, p.474-485
  52. Shin, W.-K., Lee, Y.-H., Cheon, S.-G., Hwang, Y.-H. andCho, K.-H, (1998) Ionic characteristics of the groundwater for hydroponics in Kyeongnam area. Journal of Bio-Environment Control. v.7, p.246-252
  53. Stezenbach, K.J., Farnham, I.M., Hodge, V.F. and Johannesson,K.H. (1999) Using multivariate statisticalanalysis of groundwater major cation and trace elementconcentration to evaluate groundwater flow in aregional aquifer. Hydrological Processes, v.13, p.2655-2673 https://doi.org/10.1002/(SICI)1099-1085(19991215)13:17<2655::AID-HYP840>3.0.CO;2-4
  54. Todd, D.K. (1959) Ground Water Hydrology. John Wiley& Sons, Inc., New York
  55. Todd, D.K. and Mays, L.W. (2005) Groundwater Hydrology.3rd ed., John Wiley & Sons, Inc., p.636
  56. Uhm, S.-H. and Yang, S.-J. (1983) Seismic risk map of Korea. Korea Institute of Geoscience and Mineral Resources, p.123-129
  57. Woo, N.-C., Choi, M.-J., Cheong, S.-W. and Lee, S.-G.(1999) A Groundwater quality assessment of the shallowaquifers in the rural area of yongin. Journal of the Korean Society of Groundwater Environment, v.6,p.53-58
  58. Woo, N.-C., Kim, H.-D., Lee, K.-S., Park, W.-B., Koh, G.-W. and Moon, Y.-S. (2001) Interpretation of groundwatersystem and contamination by water-qualitymonitoring in the Daejung watershed, Jeju Island.Korea Society of Economic and Environmental Geology,v.34, p.485-498
  59. Yun, S.-G. and Yoo, S.-H. (1994) Behavior of $NO_{3}$−jN andaccompanying cations derived from urea under uplandcondition. Korean Society of Soil Science and Fertilizer,v.27, p.15-20
  60. Yun, S.-T., Chae, G.-T., Koh, Y.-K., Kim, S.-R., Choi, B.-Y.,Lee, B.-H. and Kim, S.-Y. (1998) Hydrogeochemicaland environmental isotope study of groundwater inthe Pungki area. Journal of the Korean society of Groundwater Environment, v.5, p.177-191