• Title/Summary/Keyword: 수소기관

Search Result 206, Processing Time 0.022 seconds

A Study on the Performance and Emission Characteristics According to the Coolant Temperature of Combustion Chamber Head of Spark Ignition Engine Fuelled with Kerosene (Coal Oil) (Kerosene (Coal Oil)을 사용한 스파크점화기관의 연소실헤드 온도 변화에 따른 엔진 성능 및 배기 특성에 관한 연구)

  • HAN, SUNG BIN;CHUNG, YON JONG
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.1
    • /
    • pp.92-97
    • /
    • 2017
  • Kerosene (Coal oil) is a particularly attractive fuel because it is widely used to power jet engines of aircraft as jet fuel and some rocket engine. This paper describes the performance and emission characteristics according to the collant temperature of combustion chamber head of spark ignition engine fuelled with kerosene. As a result, the following knowledge is obtained. As the collant temperature of combustion chamber head is decreased, torque, volumetric efficiency and brake specific fuel consumption have been increased. When coolant temperature of combustion chamber lower, THC emission increased but CO and $NO_x$ emission decreased.

Survey on the Core Technologies of Hydrocarbon-fueled PWR X-1 Scramjet Engine for X-51 (X-51의 PWR X-1 탄화수소 연료 스크램제트 엔진 핵심 기술 고찰)

  • Noh, Jin-Hyeon;Won, Su-Hee;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.303-306
    • /
    • 2008
  • After the successful flight test of X-43A, U.S. Airforce is developing missile-type X-51A SED (Scramjet Engine Demonstrator-Wave Rider). X-51A using PWR (Pratt and Whitney Rocketdyne) X-1 hydrocarbon fueled scramjet engine will have a ground test in 2008 and flight test in 2009. Technologies established though the X-51A program will be transferred to DARPA's Falcon program developing HTV (Hypersonic Test Vehicle)-3X and HCV (Hypersonic Cruise Vehicle). Present paper is an overview of propulsion core technologies of X-51 such as regenerative cooling of engine structures and combustion using liquid/supercritical JP-7 fuel.

  • PDF

Study on Properties of High Energetic and High Dense Cyclic Hydrocarbons by the Structure (고에너지 고밀도 고리탄화수소 화합물의 구조에 따른 물성 연구)

  • Cho, Joon-Hyun;Kwon, Tae-Soo;Jeong, Deok-Jin;Oh, Chang-Ho;Park, Dae-In;Han, Jeong-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.463-466
    • /
    • 2008
  • The weapon systems with a liquid propulsion engine have been used for various purposes and demands of the liquid fuel with variety of properties for its operational purposes and environment. The cyclic hydrocarbons including norbornane or dicyclopentane structures have many applications to the guided weapon systems due to the high density and high energy characteristics, also efforts have been given in many fields. In this study, the cyclic hydrocarbons that we designed and fabricated were investigated to obtain tendency on the structures.

  • PDF

Influence of Critical Point of Hydrocarbon Jet Injected into Near-Critical Environment on Injection Behavior (근임계 환경으로 분사되는 탄화수소 제트의 임계점이 분사거동에 미치는 영향)

  • Yoon, Taekyung;Shin, Dongsoo;Lee, Keonwoong;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.32-39
    • /
    • 2018
  • Supercritical injection behavior of liquid hydrocarbon compounds, which are used as main components of propellant fuel, was analyzed. Decane and Methylcyclohexane (MCH) with different critical points were selected as experimental fluid and Shadowgraphy technique was used. Decane and MCH behave differently in the initial state under the subcritical condition. However, near the critical point, the enthalpy of evaporation became close to 0, so that phase change into supercritical fluid occurred, not vaporization process, and no breakup of both fluids occurred.

Hydrogen Embrittlement Characteristics by Slow Strain Rate Test of Aluminum Alloy for Hydrogen Valve of Hydrogen Fuel Cell Vehicle (수소연료전지 자동차의 수소밸브용 알루미늄 합금의 저변형율인장실험에 의한 수소취화특성 연구)

  • Hyun-Kyu, Hwang;Dong-Ho, Shin;Seong-Jong, Kim
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.503-513
    • /
    • 2022
  • As part of eco-friendly policies, interest in hydrogen vehicles is growing in the automotive industry to reduce carbon emissions. In particular, it is necessary to investigate the application of aluminum alloy for light weight hydrogen valves among hydrogen supply systems to improve the fuel efficiency of hydrogen vehicles. In this research, we investigated mechanical characteristics of aluminum alloys after hydrogen embrittlement considering the operating environment of hydrogen valves. In this investigation, experiments were conducted with strain rate, applied voltage, and hydrogen embrittlement time as variables that could affect hydrogen embrittlement. As a result, a brittle behavior was depicted when the strain rate was increased. A strain rate of 0.05 mm/min was selected for hydrogen embrittlement research because it had the greatest effect on fracture time. In addition, when the applied voltage and hydrogen embrittlement time were 5 V and 96 hours, respectively, mechanical characteristics presented dramatic decreases due to hydrogen embrittlement.

Effects of CrN and TiN Coating by Hydrogen Embrittlement of Aluminum Alloys for Hydrogen Valves of Hydrogen Fuel Cell Vehicles on Mechanical Properties (수소연료전지 자동차의 수소밸브용 알루미늄 합금의 수소취화에 의한 기계적 특성에 미치는 CrN과 TiN 코팅의 영향)

  • Ho-Seong Heo;Dong-Ho Shin;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.232-241
    • /
    • 2023
  • The mechanical properties of the hydrogen valve responsible for supplying and blocking hydrogen gas in a hydrogen fuel cell electric vehicle (FCEV) were researched. Mechanical properties by hydrogen embrittlement were investigated by coating chromium nitride (CrN) and titanium nitride (TiN) on aluminum alloy by arc ion plating method. The coating layer was deposited to a thickness of about 2 ㎛, and a slow strain rate test (SSRT) was conducted after hydrogen embrittlement to determine the hydrogen embrittlement resistance of the CrN and TiN coating layers. The CrN-coated specimen presented little decrease in mechanical properties until 12 hours of hydrogen charging due to its excellent resistance to hydrogen permeation. However, both the CrN and TiN-coated specimens exhibited deterioration in mechanical properties due to the peeling of the coating layer after 24 hours of hydrogen charging. The specimens coated at 350 ℃ presented a significant decrease in ultimate tensile strength due to abnormal grain growth.

A basic study for explosion pressure prediction of hydrogen fuel vehicle hydrogen tanks in underground parking lot (지하주차장 수소연료차 수소탱크 폭발 압력 예측을 위한 기초 연구)

  • Lee, Ho-Hyung;Kim, Hyo-Gyu;Yoo, Ji-Oh;Lee, Hu-Yeong;Kwon, Oh-Seung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.605-612
    • /
    • 2021
  • Amid growing global damage due to abnormal weather caused by global warming, the introduction of eco-friendly cars is accelerating to reduce greenhouse gas emissions from internal combustion engines. Accordingly, many studies are being conducted in each country to prepare for the explosion of hydrogen fuel in semi-closed spaces such as tunnels and underground parking lots to ensure the safety of hydrogen-electric vehicles. As a result of predicting the explosion pressure of the hydrogen tank using the equivalent TNT model, it was found to be about 1.12 times and 2.30 times higher at a height of 1.5 meters, respectively, based on the case of 52 liters of hydrogen capacity. A review of the impact on the human body and buildings by converting the predicted maximum explosive pressure into the amount of impact predicted that all predicted values would result in lung damage or severe partial destruction. The predicted degree of damage was applied only by converting the amount of impact caused by the explosion, and considering the additional damage caused by the explosion, it is believed that the actual damage will increase further and safety and disaster prevention measures should be taken.

Modeling of Piston Crevice Hydrocarbon Oxidation in SI Engines (전기점화 기관 간극 체적 내 미연탄화수소의 산화 모델링)

  • Choi, Hoi-Myung;Kim, Se-Jun;Min, Kyung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.884-889
    • /
    • 2001
  • Combustion chamber crevices in SI engines are identified as the largest contributor to the engine-out hydrocarbon emissions. The largest of crevice region is the piston ring pack crevice. To predict and understand the oxidation process of piston crevice hydrocarbons, a 3-dimensional numerical simulation method was developed. A engine shaped computational mesh with moving grid for piston and valve motions was constructed. And a 4-step oxidation model involving 7 species was used and the 16 coefficients in the rate expressions were optimized based on the results from a detailed chemical kinetic mechanism for the oxidation condition of engine combustion chamber. Propane was used as a fuel in order to eliminate oil layer absorption and liquid fuel effect.

  • PDF

A Study on the Performance Characteristics According to the Compression Ratio of Spark Ignition Engine Fuelled with Coal Oil (Coal Oil을 사용한 스파크 점화기관의 압축비 변화에 따른 엔진 성능에 관한 연구)

  • HAN, SUNG BIN;CHUNG, YON JONG
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.2
    • /
    • pp.225-230
    • /
    • 2017
  • Coal oil is widely used as a home heating fuel for portable and installed coal oil heaters. Today, Coal oil is widely used as fuel for jet engines and some rocket engines in several grades. This paper describes the performance characteristics according to the compression ratio of spark ignition engine fuelled with coal oil. As a result, the following knowledge is obtained: As the compression ratio is decreased, there is an increase in torque, indicated mean effective pressure (IMEP), heat release rate, and brake thermal efficiency. Higher compression ratio of the engine decreases the ignition delay period, combustion period, and cooling loss.

Performance Prediction of solenoid Actuated Hydrogen Injector (솔레노이드 구동 수소인젝터의 성능예측)

  • 이형승;이용규;김한조;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.174-185
    • /
    • 1997
  • The performance of the solenoid actuated hydrogen injector and the capacitive peak-hold type driving circuit was predicted through the modeling of the injector and the driving circuit the modeling was composed of the driving circuit, the solenoid, the moving parts of the injector, and the hydrogen injection system. The performance of the injector through the modeling was compared with the results of the solenoid and injector rig tests, and those were consistent with each other. Through the prediction of the injector performance, the effects of the components such as electrical resistor, capacitor, and injector spring are easily known to the injector performance required.

  • PDF