• Title/Summary/Keyword: 수분흡수

Search Result 802, Processing Time 0.032 seconds

Effects of mass flow of water in the stem of plant by meteorological elements in greenhouse. - Tomato, Eggplant, Kale - (온실 환경인자가 식물체내 수분이동에 미치는 영향 - 토마토, 가지, 케일을 중심으로 -)

  • 전종길;정성림;김경원;오병기
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1999.11a
    • /
    • pp.63-66
    • /
    • 1999
  • 최근 식물체내의 수분상태나 흡수되는 물의 량을 측정 또는 제어하기 위하여 레이저 경류계측센서나 열수지경류센서 등이 이용되고 있으며, 특히 열수지경류센서는 줄기 속을 흐르는 물의 량을 직접 측정하므로 생육단계에 따른 수분흡수량은 물론 하루중의 시간대별로 수분소비량을 측정하는 것이 가능하다. 이러한 식물의 생체정보를 센싱하는 것은 식물체에 적합한 환경을 조성하기 위하여 매우 중요한 것이다. (중략)

  • PDF

Mass Transfer during Salting and Desalting Processes of Chinese Cabbage (배추의 염절임 및 탈염 공정중 물질이동)

  • Kim, Dong-Kwan;Kim, Myung-Hwan;Kim, Byung-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.3
    • /
    • pp.317-322
    • /
    • 1993
  • The diffusion phenomena of water, solid and reducing sugar in Chinese cabbage during salting (5$0^{\circ}C$, 25% salt solution) and desalting (5$0^{\circ}C$, distilled water) were investigated. Water loss and solid gain during salting were rapid in the first 6hrs and then almost leveled off. After 24hrs of salting, water loss and solid gain in 100g of initial wet Chinese cabbage were 33.35g and 6.26g respectively. Moisture content was changed from 94.29% to 83.11% during 24hrs of salting. The reducing sugar concentration was also changed from 29.2 mg/$m\ell$ to 6.5mg/$m\ell$, which was linearized as a function of the square root of salting time and showing that Y=30.1841-5.0269√t. After 24hrs salting, water gain and solid loss during desalting were rapid in the first 4hrs and then increased linearly. After 12hrs of desalting, the water gain and solid loss in 100g of initial wet Chinese cabbage were 20.82g and 9.14g respectively. The amount of solid loss after 12hrs desalting was higher than that of solid gain after 24hrs salting due to the diffusion of solute presented initially in the Chinese cabbage during salting and desalting. The concentration of salt in Chinese cabbage after 12hrs desalting was 2.98% which was a suitable salt concentration for the preparation of Kimchi. At this time, the concentration of reducing sugar was only 1.6mg/$m\ell$. The linear regression equation of reducing sugar concentration during desalting was Y=6.7854-1.5992√t.

  • PDF

Water Uptake, Cotyledon Damage after Imbibition and Hypocotyl Elongation in Soybean with Different Seed Size and Color (콩 종실크기 및 종피색에 따른 침종후 수분흡수특성, 자엽손상 및 배축 신장력의 차이)

  • Park, Keum-Yong;Kim, Seok-Dong;Ryu, Yong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.4
    • /
    • pp.331-338
    • /
    • 1994
  • The experiment was conducted to determine if seed size and seed coat color of soybean might be effective in water uptake and cotyledon damage after imbibition, and hypocotyl elongation. Eight soybean cultivars were separated into two classes of large and small seed based on seed weight, and each class included two cultivars with yellow and black seed color, respectively. Small seed size group was superior in water uptake by seed for 24 hour in imbibition at $25^{\circ}C$ , but its differences decreased as soaking time increased. Small seed cultivars germinated faster and had better germination rate than large ones. However, cultivars with black seed coat showed more slow water uptake at initial time and faster germination than yellow seed, but in 24 hour after imbibition, cultivars with black seed coat had higher water uptake rate than yellow seeds. Small seed cultivar group showed no cotyledon damage in imbibition for 24 hour while large seed cultivars were damaged 78% of cotyledon, and black seed showed low cotyledon damage compared to yellow seed. Hypocotyl length was shorter in large seed rather than in small seed, but hypocotyl thickness in large seed was more thick than in small seed. In correlation coefficients, seed coat rate, embryo rate exhibited significantly negative association with seed weight, and the correlation of seed weight with water uptake in 3 hour after soaking was significantly negative, but in 24 hour showed positive correlation.

  • PDF

Changes in Root Water Uptake and Chlorophyll Fluorescence of Rice (Oryza sativa L. cv. Dongjin) Seedling under NaCl Stress (NaCl 스트레스에 따른 벼 유식물의 뿌리 수분흡수와 엽록소형광의 변화)

  • Chun, Hyun-Sik
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.154-161
    • /
    • 2008
  • The physiological and photochemical responses of rice seedling to NaCl stress were investigated through measuring leaf relative water content (RWC), root water uptake and chlorophyll fluorescence. When plants were exposed to increased salinity stress, the visual symptoms of injury were significant at ${\geq}$500 mM NaCl concentration for 4 and 5 day stress periods. The differences in Fv/Fm between control treatment and plants treated with 500 mM and 1,000 mM NaCl were evident after 5 day and 4 day, respectively, whereas in root water uptake its effect was observed at 500 mM and 1,000 mM NaCl at 2 day of salt-stressed periods. Leaf RWC in salt-stressed plants decreased gradually with increasing salinity in exogenous solution and duration of salt stress, and these decrease showed leaf RWC of 58-68% atduration over 2 day stress of 1,000 mM NaCl treatment and 88% at 1 day stress. NaCl stress led to a significant inhibition of the light-induced greening in etiolated rice plants, especially in 4 and 5 day salt-stressed plants, which linearly decreased with NaCl concentration ($R^2$=0.812 and 0.918, respectively). The effects of NaCl stress in rice seedlings indicate that water uptake in root is more sensitive to increasing NaCl concentration and stress duration than Fv /Fm in leaves compared with the same NaCl concentration.

Tentative Classification of Milled Rice by Sorption Kinetics (수화 특성에 의한 쌀의 분류)

  • Kim, Sung-Kon;Jeong, Soon-Ja;Kim, Kwan;Chae, Jae-Chun;Lee, Jung-Haeng
    • Applied Biological Chemistry
    • /
    • v.27 no.3
    • /
    • pp.204-210
    • /
    • 1984
  • Hydration of twelve japonica (j) and nine j x indica rice varieties was analyzed in terms of mathematical rate equation and a tentative classification of milled rice was attempted primarily on the basis of water uptake race of rice grain at room temperature. No two rice varieties had the same water uptake rate or diffusion coefficient. The rice samples could be classified into three groups. Rices which are considered as having good eating quality had lower water uptake rate.

  • PDF

Comparisons of Growth and Fruit Quality of 'Mudeungsan' and 'Dalgona' Watermelon Grown in Soil and Soilless Culture (토경 및 양액재배 무등산수박과 달고나수박의 생육 및 과실품질 의 비교)

  • 박순기;이범선;장영식;정순주
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1998.10a
    • /
    • pp.151-155
    • /
    • 1998
  • 본 실험은 무등산수박과 달고나수박으로 98년 4월 2일에 파종하여 4월 24일 토양과 펄라이트+코코피트 혼합배지에 각각 정식하였다. 무등산수박과 달고나수박의 재배방법에 따른 생장결과를 보면 엽수는 달고나수박이 많은 반면 총엽면적은 무등산수박이 높게 나타났다. 생체중 및 건물중에 있어서도 달고나수박보다 무등산수박이 더 높게 나타났으며 토양재배보다 양액재배 수박이 더 월등한 생장차이를 나타내었다. 당도는 달고나 수박이 무등산수박보다 훨씬 더 높은 반면 과실무게는 무등산수박이 더 높게 나타났다. 엽병내 질소흡수량은 생육초기에는 26,000-30,000prm 정도이었고 수분후 33일에는 38,000-44,000ppm 정도로 상승하였다. 인산은 생육초기 4,000-8,800ppm 정도에서 수확기에 이르면 480-l,600ppm 정도로 감소하였다. 칼륨은 생육초기에 10,000-26,000ppm 정도였으나 수분기부터는 8,000-14,000ppm 범위로 흡수되었다. 칼슘의 흡수는 생육초기에는 앙액재배 수박이 52,000-5,700ppm 범위로 토양재배 수박의 2,700-3,900ppm 범위보다 약간 많은 것으로 나타났지만 생육이 진전됨에 따라 토양재배 수박의 흡수량이 양액재배 수박의 흡수량보다 많아지는 경향이었다. 마그네슘의 흡수는 생육초기에 토경에서 훨씬 더 용이하게 흡수되는 경향이었으나 수분기부터는 200-700ppm 범위로 일정하였다.

  • PDF

Degradation Characteristics of Multi-walled Carbon Nanotube Embedded Nanocomposites (다중벽 탄소나노튜브가 함유된 나노복합재의 열화 특성)

  • Yoon, Sung Ho;Park, Ji Hye
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.422-428
    • /
    • 2017
  • The moisture absorption behavior, tensile properties, and thermal analysis properties of MWCNT embedded nanocomposites exposed to temperature and moisture were evaluated. The contents of MWCNT were 0 wt%, 1 wt%, and 2 wt%, respectively. The specimens were exposed to immersed conditions at $25^{\circ}C$ and $75^{\circ}C$ for up to 600 hours. According to the results, the apparent moisture content increased as the exposure time increased, but the difference between the maximum moisture content and the moisture content at 600 hours was almost constant. The tensile modulus decreased with increasing exposure time and the degree of decrease was increased significantly as the MWCNT content and exposure temperature increased. The tensile strength decreased with longer exposure time without MWCNT, but increased with MWCNT due to the reinforcing effect of MWCNT. The storage modulus, glass transition temperature, tan d peak magnitude were low as the exposure time increased, but tan d curves with two peaks appeared when exposed to high exposure temperature for more than 300 hours.

Effect of Accelerated Storage on the Microstructure and Water Absorption Characteristics of Korean Adzuki Bean (Vigna angularis L.) Cultivar (팥의 가속화 저장에 따른 미세구조 및 수분흡수 특성)

  • Jieun Kwak;Seon-Min Oh;You-Geun Oh;Yu-Chan Choi;Hyun-Jin Park;Suk-Bo Song;Jeong-Heui Lee;Jeom-Sig Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.167-174
    • /
    • 2023
  • This study investigated the microstructure and water absorption characteristics of the Korean adzuki bean (Vigna angularis L.) cultivar under accelerated storage. The germination rate, acid value, redness (a*), and yellowness (b*) values showed no significant differences after three months of storage compared to pre-storage under low temperatures (4℃). However, a statistically significant difference was observed under accelerated high temperatures (45℃). In particular, after storage for three months, the germination rate and acid value were 0% and 33.63 mg KOH/100g, respectively, under accelerated high temperatures. After storage for three months, the holes, hilum damage, and spaces between the seed coat and cotyledon shortened the time and speed of water absorption under accelerated high temperatures compared to that under low temperatures. Conversely, further research is required to investigate the reason for the low rate of parallel water absorption.

Studies on Polymer Coating in Soybean Seeds 1. Difference of Electrolyte Leaching of Polymeric Coating Soybean Seed (대두종자의 polymer coating 연구 1. polymer coating 종자의 conductivity 차이)

  • 이성춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.2
    • /
    • pp.158-164
    • /
    • 1994
  • These experiment were conducted to evaluate the environmentally acceptable polymers, and 10 polymers were used in these study, and to investigate conductivity, germination percentage, water uptake of polymeric coating soybean seed. The conductivity of polymeric coating seed is higher than that of none coating seed and the highest conductivity was obtained with waterlock coating seed among the 10 polymer coating seed. As the soaking time was long, the conductivity was increased. The conductivity of large seed was higher than that of small seed, and that of long period storage seed was higher than that of short period storage seed. The effects of seed coating polymers on uptake water were various, and daran 8600 inhibited uptake water of low quality seed. The waterlock, captan, klucel and sacrust was rised germination percentage, and daran 8600 was declined germination percentage, and the effect of coating polymers on germination percentage of low quality seed was higher than that of high quality seed.

  • PDF

Water Absorption of Naked Barley Kernels Differing in Pearling Degrees (정맥 수율별 쌀보리의 수분흡수)

  • Park, Sung-Hee;Kim, Kwan;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.601-605
    • /
    • 1989
  • Water absorption of the major kernels(7 and 10mesh sizes) of naked barley differing in pearling degrees at $25-50^{\circ}C$ was investigated. The time to reach equilibrium moisture content was reduced by half upon removal of over 20% of the outer layer of the kernel. Water absorption rate and diffusion coefficient of naked barley of 5% pearling degree at $40^{\circ}C$ were faster about 1.5 and 2.8 times than those of unpearled one. The activation energy of hydration for unpearled naked barley was 11.5kcal/mole, which was decreased by approximately 0.4kcal/mole upon increasing the pearling degree by 5%.

  • PDF