• Title/Summary/Keyword: 수분영향

Search Result 3,665, Processing Time 0.03 seconds

Wastepaper as a Bulking Agent for Butchery Wastes Composting (도축 폐기물의 퇴비화에 있어서 수분조절제로서 폐휴지 이용)

  • Lee, Suk-Young;You, Chang-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.183-188
    • /
    • 1998
  • Changes of chemical and physical properties of the butchery waste compost were assessed when the wastepaper was used as a bulking agent (BP). Temperature of compost, with frequent turnover, was increased up to $83^{\circ}C$ even during the winter. Canon exchange capacity of the compost was increased with composting time, but pH, water content, total carbon, total nitrogen, C/N ratio and salt concentration were decreased to the extents showing a convergency. Heavy metal contents of BP-192 were lower than the standard criteria. Germination rate of cucumber seed, when BP-34 and BP-96 composts were applied more than 15 g, was under 40%, but those of BP-143 and BP-192 were 100%, irrespective of the amounts of compost used. The C/N ratio of the matured compost was 8.6. Results indicated that wastepaper might be employed as a bulking agent for butchery wastes composting.

  • PDF

Effect of the Hopper of the Plug Transplanter and Moisture Content, Compaction Method, and Initial Irrigation of the Soil on the Seedling Survival rate at Transplant of Plug Seedling (플러그묘 정식시 정식기의 호퍼 크기, 토양수분, 초기관수량 및 진압방법이 작물에 미치는 영향)

  • 문성동;민영봉;박중춘
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.258-263
    • /
    • 1997
  • The result was summarized of basic test and field test to find what quantity of irrigation, what state of compaction and what size of transplanting hopper could induce the optimum taking root in the transplantation of plug seedling by transplanters, and thus acquired the basic data for the development of the related transplanters and the optimum growth and development control. Livability of vegetables after transplanting had no significant difference with respect to for the size of hopper, but was greatly affected by the length of seedlings. The longest possible length of seedling for transplanting and optimal length were found to be 30cm and 28cm, respectively. For irrigation when transplanting red pepper or Chinese cabbage it was thought that large-sized hopper was appropriate. The livability of plug seedling 10 days after transplantation was mainly affected by soil moisture content. Consequently it was thought no irrigation would be needed when transplanting at the soil moisture content of more than 18% ; irrigation of more than 50cc would be needed at the soil moisture content of 13% : initial irrigation of more than 100cc and subsequent irrigation would be needed at the soil moisture content of less than 3.8%. The improvement of soil compaction method (left and right side compaction) with conventional semi-automatic transplanter was not necessary, since there was no difference in livability depending on the compaction methods, left-right side compaction or back-forth-left-right side compaction.

  • PDF

Effects on Chemical Compositions and Digestibilities of the Bulking Agents as a Moisture Control and fermentation Methods of food Waste (음식찌꺼기의 발효사료화시 수분조절제와 발효방법이 화학적 조성분 및 소화율에 미치는 영향)

  • Bae, Dong-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.100-110
    • /
    • 2000
  • Studies were conducted to know effects of the bulking agents (saw dusts, mushroom waste, wheat bran coconut meal, rice hulls) adding o moisture control, fermentation methods (aerobic and anaerobic) and periods (1 to 20 days) of food waste fermentation for animal feeds on chemical compositions and in vitro DDM (digestibility of dry matter). Experiment designs were focussed basically to obtain extension service data. The NDF (neutral detergent fiber) composition in the oak and pine saw dust were 93.5% and 95.4% (DM basis) in respectively. Thus, the fermented food waste feeds using saw dust (50%) increased NDF(12%), and decreased in vitro DDM(48%) compared to those of raw materials before aerobic fermentation. The oak saw dust showed higher DDM compared to pine. Mushroom wastes which is a residues of mushroom culture mixed originally willow saw dust (80%) and wheat bran (20%) showed quite higher feed value compared to both saw dusts. It was found that an in vitro DDM and NDF composition in fermented feeds appeared highly dependent or the NDF composition in bulking agents. With an increase wheat bran ratio substitute mushroom waste showed linearly decreased NDF, and increased in vitro DDM in the fermented food waste feeds. The fermented feeds added bottling agents composed higher NDF resulted in higher NDF and lower in vitro DDM with prolonged fermentation time. The feeds from anaerobic fermentation appeared lower NDF and higher in vitro DDM compared to those of aerobic fermentation.

  • PDF

Effect of Soluble Salts and Their Concentrations on Water Absorption of Polyacrylamide Hydrogel (무기염의 종류 및 농도가 Polyacrylamide 고흡수성 수지의 수분 흡수에 미치는 영향)

  • Wang, Hyun-Jin;Choi, Jong-Myung;Lee, Jong-Suk
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.196-202
    • /
    • 2005
  • This research was conducted to determine the amount of water absorbed by a polyacrylamide hydrogel such as Stocksorb C (STSB), effect of salts on inhibition in hydration of STSB, and the hydrogel effects on changes of nutrient concentration in external solution. Absorption of deionized water by STSB reached a maximum of 180 $mL{\cdot}g^{-1}$. Monovalent soluble salts such as $KH_2PO_4,\;KNO_3$, and $(NH_4)_2SO_4$ reduced absorption of the hydrogel, but the degrees of inhibition in absorption were similar in three kinds of salts. Twenty milliequivalents per liter of $Ca_{2+}\;or\;Mg_{2+}$ reduced water absorption of STSB to $14\%$ compared to those of deionized water. Solution absorption was consistently lower in the presence of divalent cations than in the presence of the monovalent cations. But the absorption was unaffected by the uncharged salt such as urea in all concentrations tested. The final $K^+\;and\;NH_4^+-N$ concentrations of the solution remaining after absorption by STSB was higher than those of the initial solution. The soaking of STSB to full strength of Hoagland solution resulted in increase of $NO_3^--N,\;H_2PO_4^-\;and\;SO_4^{2-}$ concentrations in external solution compared to initial solution, reaching 5,300, 250 and 1,500 $mL{\cdot}g^{-1}$, respectively, at 24 hrs after soaking.

Optimization of Batch Expression of Sesame Oil (참기름의 회분식 착유의 최적화)

  • 민용규;정헌상
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.5
    • /
    • pp.785-789
    • /
    • 1995
  • In order to optimize the batch expression of sesame oil, recovery of expressed oil(REO) from roasted and unroasted sesame seeds were observed at different temperature, pressure, pressing duration and moisture content, and relatinship between REO and effects of expression factors were analysed. REO was high at 2.5~4.5% moisture content, 30~$50^{\circ}C$ and 30~50MPa, and decreased abruptly with increasing moisture content above 4.5%. The optimum temperature, pressure, pressing duration and moisture content were $40.1^{\circ}C$, 54.4MPa, 21.7min and 1.3% for unroasted seeds and $44.4^{\circ}C$, 37.8MPa, 14.4min and 2.52% for roasted seeds, respectively. REO in optimum condition was 84.6% in unroasted seed and 81.7% in roasted seed. From the statistic analysis between effects of expression factors and REO, importance of their effects was decreased in the order of moisture content, pressure, temperature and pressing duration. And also interaction effects were high in $pressure{\times}moisture$ content, $temperature{\times}moisture$ content and temperature pressure. The multiple regression equation between REO(Y) and temperature(T), pressure(P), moisture content(M), and pressing duration(D) were as follows ; $Y=18.20$ $35.66P$$24.52M-4.45P^{2}-1.20TM-4.02PM-6.62M^{2},\;r^{2}=0.89$, for unrosated sesame seed, $Y=117.93$$16.40P-58.61M-2.75P^{2}$$1.79TM-1.65PM$$7.16M^{2},\;r^{2}$$=0.91$ for roasted sesame seed.

  • PDF

Monitoring of Water Content and Electrical Conductivity in Paddy Soil Profile by Time Domain Reflectometry (Time Domain Reflectometry를 이용한 논토양 단면의 수분함량 및 전기전도도 모니터링)

  • Yoo, Sun-Ho;Han, Gwang Hyun;Bae, Byung-Sul;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.365-374
    • /
    • 1999
  • To obtain informations on vertical movements of water and solute in rice paddy field during the growing season, soil water contents and bulk electrical conductivities (${\sigma}_a$) were monitored using Time Domain Reflectometry. Soil water contents with depth showed ${\varepsilon}$-shaped profiles constituting of partly saturated zones at top and bottom layers and unsaturated zones (20-100cm) between them. Analysis by fitting with a van Genuchten-type model showed that soil water contents at 60cm were affected by both water supplied from surface water and groundwater, but at 80cm mainly affected by groundwater. Water percolation at the rate of 2cm $day^{-1}$ rates were, but large fluctuation from 10 to 38cm $day^{-1}$ in C1 layer (60-90cm). Therefore, it can be said that any water or solute entering C1 layer is very rapidly transported to C2 layer, especially during the period of high groundwater table staying, and retarded to a relatively constant percolation rate in C2 layer. This can be manifested by the fact that rapid decrease and steady increase of electrical conductivities at 50 and 110cm depth respectively, were found around that period.

  • PDF

Delamination Prediction of Semiconductor Packages through Finite Element Analysis Reflecting Moisture Absorption and Desorption according to the Temperature and Relative Humidity (유한요소 해석을 통해 온도와 상대습도에 따른 수분 흡습 및 탈습을 반영한 반도체 패키지 구조의 박리 예측)

  • Um, Hui-Jin;Hwang, Yeon-Taek;Kim, Hak-sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.37-42
    • /
    • 2022
  • Recently, the semiconductor package structures are becoming thinner and more complex. As the thickness decrease, interfacial delamination due to material mismatch can be further maximized, so the reliability of interface is a critical issue in industry field. Especially, the polymers, which are widely used in semiconductor packaging, are significantly affected by the temperature and moisture. Therefore, in this study, the delamination prediction at the interface of package structure was performed through finite element analysis considering the moisture absorption and desorption under the various temperature conditions. The material properties such as diffusivity and saturated moisture content were obtained from moisture absorption test. The hygro-swelling coefficients of each material were analyzed through TMA and TGA after the moisture absorption. The micro-shear test was conducted to evaluate the adhesion strength of each interface at various temperatures considering the moisture effect. The finite element analysis of interfacial delamination was performed that considers both deformation due to temperature and moisture absorption. Consequently, the interfacial delamination was successfully predicted in consideration of the in-situ moisture desorption and temperature behavior during the reflow process.

Arbuscular Mycorrhizal Fungus Inoculation Effect on Korean Ash Tree Seedlings Differs Depending upon Fungal Species and Soil Conditions (아버스큘 균근균(菌根菌) 접종(接種)이 균종(菌種)과 토양상태(土壤狀態)에 따라 물푸레나무 묘목(苗木)의 생장(生長)에 미치는 영향(影響))

  • Koo, Chang-Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.466-475
    • /
    • 1997
  • I examined arbuscular mycorrhizal(AM) fungus inoculation effects on the seedling growth of Korean ash tree(Fraxinus rhynchophylla Hance), which distributes in fertile mesic soils, under a seven-day watering cycle of water stress and compost-added fertile conditions. Three Korea-native AM fungi were inoculated : an unidentified Glomus species, Gigaspora margarita Becker & Hall and Scutellospora heterogama(Nicol. & Gerd) Walker & Sanders from disturbed forest soils. The effect of AM fungus inoculation on the seedling varied depending upon fungal species and soil conditions. AM formation was 27 to 65% by the Glomus without forming spores, 47 to 74% with about 10 spores per 20g soil by G. margarita and about 65% with 35 spores by S. heterogama. The soil conditions did not affect either AM or spore formation. The Glomus inoculation increased shoot N and P concentrations, but did not affect seedling growth. G. margarita increased shoot N and P, irrespective of soil conditions, in general, but S. heterogama increased N under water stress and Pin the control soil only. These two fungi significantly increased seedling growth in both control and water stress soils. Compost addition increased the growth of non-mycorrhizal seedlings and offset AM fungus inoculation effects. The relative field mycorrhizal dependency(RFMD) of the seedlings was significant only in control and water stress soils by over 40% in G. margarita or S. heterogama AM plants. Under water stress RFMD was the most evident in S. heterogama AM plants. I conclude that some AM fungi such as G, margarita and S. heterogama can broaden the niche of Korean ash seedlings to a water stress or nutrient poor site but less likely to more fertile sites.

  • PDF

Short-term Effects of Warming and Precipitation Manipulation on Seasonal Changes in Fine Root Production and Mortality for Pinus densiflora Seedlings (인위적 온난화 및 강수 조절에 따른 소나무 묘목 세근 생산량과 고사율의 계절적 변화)

  • Han, Seung Hyun;Chang, Hanna;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • This study was conducted to investigate the effects of warming and precipitation manipulation on seasonal changes in fine root production (FRP) and fine root mortality (FRM) of 33-month-old Pinus densiflora seedlings for two years. The seedlings in warmed plots were warmed with $3.0^{\circ}C$ higher using infrared heaters. The air temperature of warmed (TW) plots was set to increase by $3^{\circ}C$ compared to temperature control (TC) plots, and the three precipitation manipulation consisted of precipitation decrease (-30%; PD), precipitation increase (+30%; PI) and precipitation control (0%; PC). FRP ($mm\;mm^{-2}\;day^{-1}$) was significantly altered by only precipitation manipulation (PC: 3.57, PD: 4.59, PI: 3.02), while warming had no significant effect on the FRP and FRM. Meanwhile, interactions between warming and precipitation manipulation and seasonal changes had no significant effects on FRP and FRM. However, the influences of seasonal changes in soil temperature and soil moisture on FRP and FRM were different according to warming. In TW plots, FRP showed a positive relationship with soil temperature, and FRM showed a negative relationship with soil moisture. On the other hand, in the TC plots, FRP showed a positive relationship with soil moisture, and there were no relationships between FRM and soil temperature and moisture. These results indicate that the climate factors that affect FRP and FRM might vary as the warming progresses.

Effects of Concentrations of Nutrient Solution and Cu Stress on the Water Potential, Solute Potential and Turgor Pressure in Hydroponically Grown Muskmelon (양액농도와 Cu 스트레스가 양액재배 머스크멜론의 수분포텐셜, 침투포텐셜 및 팽압에 미치는 영향)

  • 장홍기;정순주
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.65-70
    • /
    • 1996
  • Water potential which is an physical chemistry and thermodynamic indicator expressed water status of plant root, stem and fruit could be use as a useful indicator for growth control of hydroponically grown muskmelon plant. Linear relationship was observed between EC and water potential of nutrient solution, consequently increment of EC related to the decreasing water potential and resulted with the alteration of water potential and solute potential of upper leaves. Rapid reduction in growth was observed in over 5${\mu}{\textrm}{m}$ of Cu concentration in the media and same tendency was recorded in the shoot fresh weight, root dry weight and chlorophyll content. Increment of Cu concentration in the nutrient solution leads to lower the growth rate and then the water potential of upper leaves. Turgor pressure was not affected the growth of hydroponically grown muskmelon and also Cu concentration of nutrient solution was not recognized the direct relationship to the growth characteristics of muskmelon. These results demonstrated that water potential of nutrient solution can be use as an useful indicator for water physiological comparison of plant growth in hydroponically grown muskmelon.

  • PDF