• Title/Summary/Keyword: 수분생태계

Search Result 99, Processing Time 0.024 seconds

Effect of thinning ratio on the forest environment and fruiting of ectomycorrhizal mushrooms in a Pinus densiflora stand (소나무림에서 간벌률이 산림 내 환경과 외생균근성 버섯 발생에 미치는 영향)

  • Yong-Woo Park;Jin-Gun Kim;Hwayong Lee
    • Journal of Mushroom
    • /
    • v.21 no.1
    • /
    • pp.22-32
    • /
    • 2023
  • To investigate the effect of thinning intensity on environmental factors and ectomycorrhizal mushroom fruiting in forest ecosystems, we studied canopy closure, throughfall, soil temperature, soil moisture, light response of understory vegetation, and ectomycorrhizal mushroom fruiting in a 10-year-old pine forest after 34%, 45%, and 60% thinning. Canopy closure was significantly higher in the 34% treatment and control plots, ranging from 80-85% in April. However, in November, all thinning treatment plots showed a decrease of approximately 5-10% compared with the control plot. The 60% treatment plot had over 200 mm of additional throughfall compared with the control plot, and monthly throughfall was significantly higher by more than 100 mm in October. The soil temperature in each treatment plot increased significantly by up to 1℃ or more compared with the control plot as the thinning rate increased. The soil moisture increased by more than 5% in the thinning treatment plots during rainfall, particularly in the 34% treatment plot, where the rate of moisture decrease was slower. The photosynthetic rate of major tree species (excluding Pinus densiflora)was highest in Quercus mongolica, with a rate of 7 µmolCO2·m-2·s-1. At a lightintensity of 800 μmol·m-2·s-1, Q. mongolica showed the highest photosynthetic level of 6 ± 0.3 μmolCO2·m-2·s-1 in the 45% treatment. The photosynthetic rate of Fraxinus sieboldiana and Styrax japonicus increased as the thinning intensity increased. The Shannon-Wiener index of mycorrhizal mushrooms did not significantly differ among treatments, but the fresh weight of mushrooms was approximately 360-840 g higher in the 34% and 45% treatments than in the control. Additionally, the fresh weight of fungi in the 60% treatment was 860 g less than that in the control. There were more individuals of Amanita citrina in the control than in the thinning treatment, while Suillus bovinus numbers increased by more than 10 times in the 34% thinning treatment compared with the control.

Trend Analysis of Vegetation Changes of Korean Fir (Abies koreana Wilson) in Hallasan and Jirisan Using MODIS Imagery (MODIS 시계열 위성영상을 이용한 한라산과 지리산 구상나무 식생 변동 추세 분석)

  • Minki Choo;Cheolhee Yoo;Jungho Im;Dongjin Cho;Yoojin Kang;Hyunkyung Oh;Jongsung Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.325-338
    • /
    • 2023
  • Korean fir (Abies koreana Wilson) is one of the most important environmental indicator tree species for assessing climate change impacts on coniferous forests in the Korean Peninsula. However, due to the nature of alpine and subalpine regions, it is difficult to conduct regular field surveys of Korean fir, which is mainly distributed in regions with altitudes greater than 1,000 m. Therefore, this study analyzed the vegetation change trend of Korean fir using regularly observed remote sensing data. Specifically, normalized difference vegetation index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS), land surface temperature (LST), and precipitation data from Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievalsfor GPM from September 2003 to 2020 for Hallasan and Jirisan were used to analyze vegetation changes and their association with environmental variables. We identified a decrease in NDVI in 2020 compared to 2003 for both sites. Based on the NDVI difference maps, areas for healthy vegetation and high mortality of Korean fir were selected. Long-term NDVI time-series analysis demonstrated that both Hallasan and Jirisan had a decrease in NDVI at the high mortality areas (Hallasan: -0.46, Jirisan: -0.43). Furthermore, when analyzing the long-term fluctuations of Korean fir vegetation through the Hodrick-Prescott filter-applied NDVI, LST, and precipitation, the NDVI difference between the Korean fir healthy vegetation and high mortality sitesincreased with the increasing LST and decreasing precipitation in Hallasan. Thissuggests that the increase in LST and the decrease in precipitation contribute to the decline of Korean fir in Hallasan. In contrast, Jirisan confirmed a long-term trend of declining NDVI in the areas of Korean fir mortality but did not find a significant correlation between the changes in NDVI and environmental variables (LST and precipitation). Further analyses of environmental factors, such as soil moisture, insolation, and wind that have been identified to be related to Korean fir habitats in previous studies should be conducted. This study demonstrated the feasibility of using satellite data for long-term monitoring of Korean fir ecosystems and investigating their changes in conjunction with environmental conditions. Thisstudy provided the potential forsatellite-based monitoring to improve our understanding of the ecology of Korean fir.

Ecological Examinations of the Radial Growth of Pine Trees (Pinus densiflora S. et Z.) on Mt. Namsan and the Potential Effects of Current Level of Air Pollutants to the Growth of the Trees in Central Seoul, Korea.

  • Kim, Eun-Shik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.E
    • /
    • pp.371-386
    • /
    • 1994
  • Ecological examinations of the radial growth Patterns of pine trees(Pinus densiflora Sieb. et Zucc) growing on Mt. Namsan in central Seoul were made to test a Proposition that the pine trees decline due to the influence of air pollution and acid rain, which was proposed by some researchers in Korea, and the potential effects of current level of air pollutants to the growth of the Pine trees in central Seoul have been speculated. Tree-rings of 40 trees sampled at 3 sites of Mt. Namsan were prepared and examined using a Computer-aided Tree-Ring Measuring System at Kookmin University, Korea. Air Pollutant data collected by the Ministry of Environment( MOE ) and the Forestry Research Institute(FRI) were used to infer the general conditions of the environment. Correlation analysis was applied to the data set of tree growth and the other environmental factors. General information derived from the close examination of the tree-rings and the data on air pollution, drought and the other biological conditions suggested that the growth of the pine trees was severely affected by the occurrence of drought(climatic variation), the prevalence of the pine leaf gall midges(insects), and the suppression by the black locust trees(Robinia pseudo-acacia L.) (competition among trees). While the current condition of air pollution in Seoul cannot be categorized as good, the concentrations of air pollutants are not so high as to cause acute damages to the trees. In addition, while the data of rain acidity showed episodic low PHs of under 4.0, the average of them is far less acidic than those which were observed in either northeastern United States or central Europe, where the decline of trees were not solely attributed to any of the air pollutants. Considering the sequential facts that one of the most important environmental factors that affect the growth of trees is weather condition of the forest that the proposition of the decline of the pine trees was made without careful examination of the growth patterns and past growth history of them as well as the complex influences of many other factors including the weather conditions to the growth of trees, and that no objective explanation has been made on the causal relationships between the current condition of air pollution and the growth of the trees, such a proposition should be evaluated as invalid for the explanation of tree growth on Mt. Namsan in central Seoul, Korea. The author evaluates the factors of air pollution (including acid rain) as the predisposing factors, which may have the Potentials to chronically affect the tree growth at the forest ecosystem on Mt. Namsan for a long period of time. Ecosystem ecological studies should be further carried out to carefully explain both the functional and the structural aspects of the ecosystem processes, which include the biogeochemistry and the long-term changes of soil conditions as well as the growth of the other tree species on the mountain.

  • PDF

Analysis of Changes in Pine Forests According to Natural Forest Dynamics Using Time-series NFI Data (시계열 국가산림자원조사 자료 기반 자연적 임분동태 변화에 따른 소나무림의 감소 특성 평가)

  • Eun-Sook Kim;Jong Bin Jung;Sinyoung Park
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.40-50
    • /
    • 2024
  • Pine forests are continuously declining due to competition with broadleaf trees, such as oaks, as a consequence of changes in the natural dynamics of forest ecosystem. This natural decline creates a risk of losing the various benefits pine trees have provided to people in the past. Therefore, it is necessary to prepare future forest management directions by considering the state of pine tree decline in each region. The goal of this study is to understand the characteristics of pine forest changes according to forest dynamics and to predict future regional changes. For this purpose, we evaluated the trend of change in pine forests and extracted various variables(topography, forest stand type, disturbance, and climate) that affect the change, using time-series National Forest Inventory (NFI) data. Also, using selected key variables, a model was developed to predict future changes in pine forests. As a results, it showed that the importance of pine trees in forests across the country has decreased overall over the past 10 years. Also, 75% of the sample points representing pine trees remained unchanged, while the remaining 25% had changed to mixed forests. It was found that these changes mainly occurred in areas with good moisture conditions or disturbance factors inside and outside the forest. In the next 10 years, approximately 14.2% of current pine forests was predicted to convert to mixed forests due to changes in natural forest dynamics. Regionally, the rate of pine forest change was highest in Jeju(42.8%) and Gyeonggi(26.9%) and lowest in Gyeongbuk(8.8%) and Gangwon(13.8%). It was predicted that pine forests would be at a high risk of decline in western areas of the Korean Peninsula, including Gyeonggi, Chungcheong, and Jeonnam. This results can be used to make a management plan for pine forests throughout the country.

Effects of Drought Stress and Nitrogen Fertilization on Growth and Physiological Characteristics of Pinus densiflora Seedlings Under Elevated Temperature and CO2 Concentration (대기 중 온도 및 CO2 농도 조절에 따른 건조 스트레스와 질소 시비가 소나무의 생장 및 생리적 특성에 미치는 영향)

  • Song, Wookyung;Lee, Bora;Cho, Nanghyun;Jung, Sungcheol;Kim, Eun-Sook;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.57-67
    • /
    • 2020
  • Pinus densiflora is the most widely distributed tree species in South Korea. Its ecological and socio-cultural attributes makes it one of the most important tree species in S. Korea. In recent times however, the distribution of P. densiflora has been affected by dieback. This phenomenon has largely been attributed to climate change. This study was conducted to investigate the responses of growth and physiology of P. densiflora to drought and nitrogen fertiliz ation according to the RCP 8.5 scenario. A Temperature Gradient Chamber (TGC) and CO2. Temperature Gradient Chamber (CTGC) were used to simulate climate change conditions. The treatments were established with temperature (control versus +3 and +5℃; aCeT) and CO2 (control: aCaT versus x1.6 and x2.2; eCeT), watering(control versus drought), fertilization(control versus fertilized). Net photosynthesis (Pn), stomatal conductance (gs), biomass and relative soil volumetric water content (VWC) were measured to examine physiological responses and growth. Relative soil VWC in aCeT significantly decreased after the onset of drought. Pn and gs in both aCeT and eCeT with fertiliz ation were high before drought but decreased rapidly after 7 days under drought because nitrogen fertilization effect did not last long. The fastest mortality was 46 days in aCeT and the longest survival was 56 days in eCeT after the onset of drought. Total and partial biomass (leaf, stem and root) in both aCeT and eCeT with fertiliz ation were significantly high, but significantly low in aCeT. The results of the study are helpful in addressing P. densiflora vulnerability to climate change by highlighting physiological responses related to carbon allocation under differing simulated environmental stressors.

Coarse Woody Debris (CWD) Respiration Rates of Larix kaempferi and Pinus rigida: Effects of Decay Class and Physicochemical Properties of CWD (일본잎갈나무와 리기다소나무 고사목의 호흡속도: 고사목의 부후등급과 이화학적 특성의 영향)

  • Lee, Minkyu;Kwon, Boram;Kim, Sung-geun;Yoon, Tae Kyung;Son, Yowhan;Yi, Myong Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.1
    • /
    • pp.40-49
    • /
    • 2019
  • Coarse woody debris (CWD), which is a component of the forest ecosystem, plays a major role in forest energy flow and nutrient cycling. In particular, CWD isolates carbon for a long time and is important in terms of slowing the rate of carbon released from the forest to the atmosphere. Therefore, this study measured the physiochemical characteristics and respiration rate ($R_{CWD}$) of CWD for Larix kaempferi and Pinus rigida in temperate forests in central Korea. In summer 2018, CWD samples from decay class (DC) I to IV were collected in the 14 forest stands. $R_{CWD}$ and physiochemical characteristics were measured using a closed chamber with a portable carbon dioxide sensor in the laboratory. In both species, as CWD decomposition progressed, the density ($D_{CWD}$) of the CWD decreased while the water content ($WC_{CWD}$) increased. Furthermore, the carbon concentrations did not significantly differ by DC, whereas the nitrogen concentration significantly increased and the C/N ratio decreased. The respiration rate of L. kaempferi CWD increased significantly up to DC IV, but for P. rigida it increased to DC II and then unchanged for DC II-IV. Accordingly, except for carbon concentration, all the measured characteristics showed a significant correlation with $R_{CWD}$. Multiple linear regression showed that $WC_{CWD}$ was the most influential factor on $R_{CWD}$. $WC_{CWD}$ affects $R_{CWD}$ by increasing microbial activity and is closely related to complex environmental factors such as temperature and light conditions. Therefore, it is necessary to study their correlation and estimate the time-series pattern of CWD moisture.

A study on spatial onset characteristics of flash drought based on GLDAS evaporative stress in the Korean Peninsula (GLDAS 증발 스트레스 기반 한반도 돌발가뭄의 공간적 발생 특성 연구)

  • Kang, Minsun;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.631-639
    • /
    • 2023
  • Flash drought (FD), characterized by the rapid onset and intensification, can significantly impact ecosystems and induce immediate water stress. A more comprehensive understanding of the causes and characteristics of FD events is required to enhance drought monitoring. Therefore, we investigated the FD events took place over the Korean peninsula using Global Land Data Assimilation System (GLDAS) data from 2012 to 2022. We first detected FD events using the stress-based method (Standardized Evaporative Stress Ratio, SESR), and analyzed the frequency and duration of FDs. The FD events were classified into three cases based on the variations in Actual Evapotranspiration (AET) and potential Evapotranspiration (PET), and spatially analyzed. Results revealed that there are regional disparities in frequency and duration of FDs, with a mean frequency of 6.4 and duration of 31 days. When classified into Case 1 (normal condition), Case 2 (AET-driven), and Case 3 (PET-driven), we found that Case 2 FDs emerged approximately 1.5 times more frequently than those driven by PET (Case 3) across the Korean peninsula. Case 2 FDs were found to be induced under water-limited conditions, and led both AET and PET to be decreased. Conversely, Case 3 FDs occurred under energy-limited conditions, with increase in both. Case 2 FDs predominantly affected the northwestern and central-southern agricultural regions, while Case 3 occurred in the eastern region, characterized by forested land cover. These findings offers insights into our understanding of FDs over the Korean peninsula, considering climate factors, land cover, and water availability.

Effects of Tree Density Control on Carbon Dynamics in Young Pinus densiflora stands (소나무 유령림의 임목밀도 조절이 탄소 동태에 미치는 영향)

  • Song, Su-Jin;Jang, Kyoung-Soo;Hwang, In-Chae;An, Ki-Wan;Lee, Kye-Han
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.275-283
    • /
    • 2016
  • The objective of this study was to examine carbon dynamics with biomass, soil $CO_2$ efflux, litter and root decomposition after tree density control in young Pinus densiflora stands. The stands were established with 50% thinning, clear-cut, and control stands with three pseudo-replicated plots and a bare soil plot in 8-year-old Pinus densiflora nursery field. Monthly measurements were conducted from March 2012 to February 2014 and aboveground biomass and coarse-roots were estimated by derived allometric equations. Average diameter growth at root collar in control and thinned was 0.89 cm and 1.48 cm per year, respectively, and the diameter growth of control stand was significantly higher than that of thinned stands (p<0.05). Total biomass was estimated to 5.17, $4.85kg\;C\;m^{-2}$ per year in control and thinned, respectively. Annual soil $CO_2$ efflux in control, thinned, clear cut, and bare soil was 3.71, 3.90, 4.17, $4.56kg\;CO_2\;m^{-2}\;yr^{-1}$, respectively and removing trees significantly increased soil $CO_2$ efflux (p<0.05). Net Ecosystem Production (NEP) was 1.57, 1.36, -0.67, $-1.25kg\;C\;m^{-2}\;yr^{-1}$ in control, thinned, clear cut and bare soil in the young Pinus densiflora stands. NEP was significantly decreased by removing trees. Thinning increased diameter at root collar and carbon of individual tree and recovered 86% of carbon removed by thinning after one-year. In addition, soil $CO_2$ efflux increased and NEP increased by thinning. Results of this study, tree density control such as thinning increased the carbon storage and growth of the young Pinus densiflora stands.

Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images (딥러닝과 Landsat 8 영상을 이용한 캘리포니아 산불 피해지 탐지)

  • Youngmin Seo;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1413-1425
    • /
    • 2023
  • The increasing frequency of wildfires due to climate change is causing extreme loss of life and property. They cause loss of vegetation and affect ecosystem changes depending on their intensity and occurrence. Ecosystem changes, in turn, affect wildfire occurrence, causing secondary damage. Thus, accurate estimation of the areas affected by wildfires is fundamental. Satellite remote sensing is used for forest fire detection because it can rapidly acquire topographic and meteorological information about the affected area after forest fires. In addition, deep learning algorithms such as convolutional neural networks (CNN) and transformer models show high performance for more accurate monitoring of fire-burnt regions. To date, the application of deep learning models has been limited, and there is a scarcity of reports providing quantitative performance evaluations for practical field utilization. Hence, this study emphasizes a comparative analysis, exploring performance enhancements achieved through both model selection and data design. This study examined deep learning models for detecting wildfire-damaged areas using Landsat 8 satellite images in California. Also, we conducted a comprehensive comparison and analysis of the detection performance of multiple models, such as U-Net and High-Resolution Network-Object Contextual Representation (HRNet-OCR). Wildfire-related spectral indices such as normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as input channels for the deep learning models to reflect the degree of vegetation cover and surface moisture content. As a result, the mean intersection over union (mIoU) was 0.831 for U-Net and 0.848 for HRNet-OCR, showing high segmentation performance. The inclusion of spectral indices alongside the base wavelength bands resulted in increased metric values for all combinations, affirming that the augmentation of input data with spectral indices contributes to the refinement of pixels. This study can be applied to other satellite images to build a recovery strategy for fire-burnt areas.

Role of Wetland Plants as Oxygen and Water Pump into Benthic Sediments (퇴적물내의 산소와 물 수송에 관한 습지 식물의 역할)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.436-447
    • /
    • 2004
  • Wetland plants have evolved specialized adaptations to survive in the low-oxygen conditions associated with prolonged flooding. The development of internal gas space by means of aerenchyma is crucial for wetland plants to transport $O_2$ from the atmosphere into the roots and rhizome. The formation of tissue with high porosity depends on the species and environmental condition, which can control the depth of root penetration and the duration of root tolerance in the flooded sediments. The oxygen in the internal gas space of plants can be delivered from the atmosphere to the root and rhizome by both passive molecular diffusion and convective throughflow. The release of $O_2$ from the roots supplies oxygen demand for root respiration, microbial respiration, and chemical oxidation processes and stimulates aerobic decomposition of organic matter. Another essential mechanism of wetland plants is downward water movement across the root zone induced by water uptake. Natural and constructed wetlands sediments have low hydraulic conductivity due to the relatively fine particle sizes in the litter layer and, therefore, negligible water movement. Under such condition, the water uptake by wetland plants creates a water potential difference in the rhizosphere which acts as a driving force to draw water and dissolved solutes into the sediments. A large number of anatomical, morphological and physiological studies have been conducted to investigate the specialized adaptations of wetland plants that enable them to tolerate water saturated environment and to support their biochemical activities. Despite this, there is little knowledge regarding how the combined effects of wetland plants influence the biogeochemistry of wetland sediments. A further investigation of how the Presence of plants and their growth cycle affects the biogeochemistry of sediments will be of particular importance to understand the role of wetland in the ecological environment.