• Title/Summary/Keyword: 수복재료

Search Result 322, Processing Time 0.028 seconds

In vitro evaluation of the wear resistance of provisional resin materials fabricated by different methods (제작방법에 따른 임시 수복용 레진의 마모저항성에 관한 연구)

  • Ahn, Jong-Ju;Huh, Jung-Bo;Choi, Jae-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.110-117
    • /
    • 2019
  • Purpose: This study was to evaluate the wear resistance of 3D printed, milled, and conventionally cured provisional resin materials. Materials and methods: Four types of resin materials made with different methods were examined: Stereolithography apparatus (SLA) 3D printed resin (S3P), digital light processing (DLP) 3D printed resin (D3P), milled resin (MIL), conventionally self-cured resin (CON). In the 3D printed resin specimens, the build orientation and layer thickness were set to $0^{\circ}$ and $100{\mu}m$, respectively. The specimens were tested in a 2-axis chewing simulator with the steatite as the antagonist under thermocycling condition (5 kg, 30,000 cycles, 0.8 Hz, $5^{\circ}C/55^{\circ}C$). Wear losses of the specimens were calculated using CAD software and scanning electron microscope (SEM) was used to investigate wear surface of the specimens. Statistical significance was determined using One-way ANOVA and Dunnett T3 analysis (${\alpha}=.05$). Results: Wear losses of the S3P, D3P, and MIL groups significantly smaller than those of the CON group (P < .05). There was no significant difference among S3P, D3P, and MIL group (P > .05). In the SEM observations, in the S3P and D3P groups, vertical cracks were observed in the sliding direction of the antagonist. In the MIL group, there was an overall uniform wear surface, whereas in the CON group, a distinct wear track and numerous bubbles were observed. Conclusion: Within the limits of this study, provisional resin materials made with 3D printing show adequate wear resistance for applications in dentistry.

Effect of fabrication method and surface polishing on the surface roughness and microbial adhesion of provisional restoration (임시 수복물의 제작 방식과 표면 연마가 표면 거칠기와 세균 부착에 미치는 영향)

  • Yeon-Ho Jung;Hyun-Jun Kong;Yu-Lee Kim
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.3
    • /
    • pp.149-158
    • /
    • 2024
  • Purpose: This study aims to investigate the effects of provisional restoration fabrication methods and surface polishing on surface roughness and microbial adhesion through in vitro experiments. Materials and Methods: 120 cylindrical provisional restoration resin blocks (10 × 10 × 2.5 mm) were manufactured according to four fabrication methods, and 30 specimens were assigned to each group. Afterwards, they were divided into non-polishing group, #400 grit SiC polishing group, and #800 grit SiC polishing group and polished to a 10 × 10 × 2 mm specimen size (n = 10). The surface roughness Ra and Ry of the specimen was measured using a Surface Roughness Tester. Three specimens were extracted from each group and were coated with artificial saliva, and then Streptococcus mutans were cultured on the specimens at 37℃ for 4 hours. The cultured specimens were fixed to fixatives and photographed using a scanning electron microscope. For statistical analysis, the two way of ANOVA was performed for surface roughness Ra and Ry, respectively, and the surface roughness was tested post-mortem with a Scheffe test. Results: The fabrication method and the degree of surface polishing of the provisional restorations had a significant effect on both surface roughness Ra and Ry, and had an interaction effect. There was no significant difference in Ra and Ry values in all polishing groups in DLP and LCD groups. Conclusion: The fabrication method and surface polishing of the provisional restoration had a significant effect on surface roughness and showed different adhesion patterns for S. mutans adhesion.

COMPARISON OF WEAR RESISTANCE AMONG RESIN DENTURE TEETH OPPOSING VAR10US RESTORATIVE MATERIALS (수복재료에 대합되는 의치용 레진치의 마모저항성 비교)

  • Lee, Chul-Young;Chung, Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.3
    • /
    • pp.313-327
    • /
    • 1999
  • The aim of this study was to compare wear resistance of resin denture teeth opposing various restorative materials. The wear resistance of conventional acrylic resin teeth(Trubyte Biotone) and three high-strength resin teeth(Bioform IPN, Endura, SR-Orthosit-PE) opposing different restorative materials(gold alloys, dental porcelain, composite resin) was compared. Wear tests were conducted with a sliding-induced wear testing apparatus which applied 100,000 strokes to the specimen in a mesio-distal direction under conditions of 100 stroke/min and constant loading of 1Kgf/tooth. Wear resistance of the resin denture teeth was evaluated by the following criteria : 1) wear depth, 2) weight loss, and 3) SEM observation. Results were as follows. 1. When opposed to gold alloys and composite resin, high-strength resin teeth showed superior wear resistance compared to acrylic resin teeth. But, in cases opposing dental porcelain, differences between the wear of the high-strength and acrylic resin teeth were not statistically significant (p<0.05). 2. When comparing wear resistance among high-strength resin teeth, opposing gold alloys, Endura was slightly more resistant and while in cases opposing dental porcelain, SR-Orthosit-PE was showed to be slightly resistant(p<0.05). 3. The wear of high-strength resin teeth was greater by 5 to 7 times when opposing porcelain and 2 to 3 times when opposing composite resin compared to gold alloys(p<0.05). 4. SEM observations of the wear surface showed that wear of resin teeth opposing gold alloys is a fatigue type of wear and wear of resin teeth opposing dental porcelain is fatigue and abrasion type of wear. Trubyte Biotone showed more severe fatigue type of wear than high-strength resin teeth. In conclusion, the use of dental porcelain should seriously be considered as restorative material in cases opposing resin denture teeth and improvement seems to be needed on resin teeth in the areas of wear resistance.

  • PDF

A STUDY ON THE SHOCK-ABSORBING BEHAVIOR OF RESTORATIVE MATERIALS AND INTERMOBILE CONNECTOR USEDIN IMZ IMPLANTS (수복재료와 내가동연결장치가 IMZ 임프란트 보철물의 충격흡수효과에 미치는 영향)

  • Lee, Su-Jeong;Chung, Chan-Mo;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.118-129
    • /
    • 1997
  • The purpose of this study was to evaluate the shock absorbing effect of 4 restorative materials and intramobile connector. The damping effect of four restorative materials used to veneer test crown rigidly connected to IMZ implant and subjected to an impact force was measured. These materials included a gold alloy(stabilor G) : a noble metal ceramic alloy(Degudent H) : porcelain(Duceram) : composite resin(Dentacolor). In addition, this study compared damping effect of same restoretive materials after using polyoxymethylene intramobile connector(POM IMC). The result of this study suggest that : In case of using metal IMC 1. Veneered composite resin(group IV) reduced the impact force by 75%, when compared to an equivalent thickness of porcelain(group III). Group IV reduced the impact force by 87% and 89%, respectively, when compared to Stabilor G(group I) and Degudent H(group II). 2. The impact force recorded was higher for the alloy with the higher elastic modulus.(Stabilor G, group I, Young's modulus 107 Gpa, versus Degudent H, Group II, Young's modulus 95 Gpa) 3. It took the longest time for composite resin veneered group(IV) to reach to peak force when compared group I, II, III. In case of using POM IMC 4. The mean impact force recorded were reduced by 79%(group I), 78%(group II), 69%(group III), 84%(group IV), respectively, when compared to using metal IMC. 5. The time required to reach the peak force were increased by 78%(group I, II) 87%(group III), 34%(group IV), respectively, when compared to using metal IMC>.

  • PDF

THE STRESS ANALYSIS OF SUPPORTING TISSUE AND IMPLANT ACCORDING TO CROWN RESTORATIVE MATERIALS AND TYPE OF IMPLANT (수복재료와 임플랜트 종류에 따른 임플랜트 및 지지조직의 응력분포)

  • Choi Chang-Hwan;Oh Jong-Suk;Vang Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.1
    • /
    • pp.53-67
    • /
    • 2002
  • This study was aimed to analyze the stress distribution of implant and supporting tissue in single tooth implant restoration using Branemark $system^{(R)}$(Nobel Biocare, Gothenberg, Sweden) and Bicon system(Bicon Dental Implants, Boston, MA). Two dimensional finite element analysis model was made at mandibular first premolar area As a crown materials porcelain, ceromer, ADA type III gold alloy were used. Tests have been performed at 25Kgf vertical load on central fossa of crown portion and at 10Kgf load with $45^{\circ}$ lateral direction on cusp inclination. The displacement and stresses of implant and supporting structures were analyzed to investigate the influence of the crown material and the type of implant systems by finite element analysis. The results were obtained as follows : 1. The type of crown material influenced the stress distribution of superstructure, but did not influence that of the supporting alveolar bone. 2. The stress distribution of ceromer and type III gold alloy and porcelain is similar. 3. Stress under lateral load was about twice higher than that of vertical load in all occlusal restorative materials. 4. In Bicon system, stress concentration is similar in supporting bone area but CerOne system generated about 1.5times eater stress more in superstructure material. 5. In Branemark models, if severe occlusal overload is loaded in superstvucture. gold screw or abutment will be fractured or loosened to buffer the occlusal overload but in Bicon models such buffering effect is not expected, so in Bicon model, load can be concentrated in alveolar bone area.

The stress analysis of supporting tissues according to crown restorative materials in Brånemark osseointegrated implant (Brånemark 골유착성 매식체의 금관 수복재료에 따른 지지조직의 응력분석)

  • Jeong, Gwan-Ho;Bae, Tae Seong;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.2
    • /
    • pp.199-215
    • /
    • 1990
  • This study was to analyze the stress distribution of implant and supporting tissue in $Br{\aa}nemark$ osseointegration implant. The analysis has been conducted by using the axisymmetric finite element method and type of model according to crown material. Tests have been performed at 1 kg load on central fossa of crown portion. Each type of model was designed differently according to crown material. 1) Porcelain fused to metal crown(Model A) 2) Composite resin veneered crown(Model B) 3) Acrylic resin veneered crown(Model C) 4) Type III gold crown(Model D) The displacements and stresses of implant and supporting structures were analyzed to investigate the influence of the type of crown material. The results were obtained as follows : 1. Displacement of implant was shown uniformly downward displacement in all models and abutments were observed distally downward displacement. 2. In supporting tissues, stress was concentrated on the crest of compact bone and the spongy bone below implant. 3. The PFM and the type III gold crown showed the largest concentration of stress at the crest of compact bone and the spongy bone below implant, respectively. Acrylic resin artificial teeth and composite resin veneered crown indicated almost the same distribution of stress. 4. The gold screw, the abutment screw and the top of abutment showed the concentration of stress in implants of every model.

  • PDF

CLINICAL EVALUATION OF AMALGAM BONDING : TWO YEARS FOLLOW-UP (접착형 아말감의 2년 후 임상적 평가)

  • Ryu, Phil-Jun;Hahn, Se-Hyun;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.530-534
    • /
    • 2001
  • Many dental practitioners are bonding amalgam to tooth structure. The potential advantage of this procedure, suggested by in vitro test results, are reduced microleakage, which could lead to a reduced incidence of postoperative sensitivity ; increased strength of the prepared tooth ; and retention of restoration in less retentive preparations, with the potential fer conserving tooth structure. Although in vitro studies support this procedure, its efficacy has not been adequately confirmed in the clinical environment. The authors placed traditional Class I and Class II, bonded and unbonded amalgam restorations in 76 teeth. Fuji I Glass Ionomer luting cement was the bonding agent selected. Marginal adaptation were evaluated after two years. the authors found no significant difference in marginal adaptation between bonded and unbonded restorations.

  • PDF

A STUDY ON THE SHEAR BOND STRENGTH OF ESTHETIC RESTORATIVE MATERIALS TO DENTAL AMALGAM (아말감과 심미성 수복재료와의 전단 결합강도에 관한 연구)

  • Jeong, Hye-Jeon;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.129-141
    • /
    • 1995
  • Composite resin and glass-ionomer cement can be used for the purpose of repair of defective amalgam restoration. The purpose of this study was to evaluate of shear bond strength of esthetic restorative materials to dental amalgam. The materials used in this study were Photo Clearfil Bright(light curing composite resin), Clearfil F II(chemical curing composite resin), Fuji II LC(light curing glass-ionomer cement), Fuji II (chemical curing glass-ionomer cement), All-Bond 2(intermediary), and Scotchbond Multi-Purpose (intermediary). A total of 120 acrylic cylinders with amalgam were divided into 8 groups After amalgam condensation, all specimens were stored for 48 hours in water at $37^{\circ}C$ and tested with Instron universal testing machine between amalgam and composite resins and glass-ionomer cements. The data were analyzes statiscally by ANOVA and Duncan test. The following results obtained ; 1. The shear bond strength of bonded composite resin to amalgam was higher than bonded glass-ionomer cement(P<.001). 2. The group 4 had highest shear bond strength with 15.45kgf/$cm^2$ and the group 5 had lowest shear bond strenght with 3.26kgf/$cm^2$(P<.001). 3. In the group 3, 4, 5, 6, the group 3, 4 with All-Bond 2 had higher shear bond strength than the group 5, 6 with Scotch bond MP both in light-curing and in chemical curing. 4. Both in composite resin and glass-ionomer cement, chemical curing materials had higher shear bond stength than light curing materials(P<.001).

  • PDF

A STUDY ON THE STAINING TENDENCY OF ETHETIC RESTORATIVE MATERIALS (심미성 수복재료의 착생경향에 관한 연구)

  • Shin, Heung-Soo;Hwang, Ho-Keel;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.372-383
    • /
    • 1995
  • The staining tendency of esthetic restorative material was very important factor for the people who are great concern about the esthetics. Most external stains were superficial and adjustable by routine prophylactic procedure. But some of these stains were remained under superficial stain. Some of these stains were accumulative on external tooth surface and it's removal alter the anatomic contour of restoration. The purpose of this study was to evaluate and compare the staining tendency of esthetic restorative materials to staining solution. In this study two glass-ionomer cements (Fuji II Glass-Ionomer Cement and Fuji II LC Glass-Ionomer Cement) and three composite resins (Sil$\ddot{u}$x Plus, APH and P-50) were evaluated and compared. Total 8 disc-shaped specimens of each material (17mm diameter, Imm thick) were immersed in coffee staining solution. These specimens were divided into one control and 3 experimental groups according to the immersion period as follows : Control: immersed in distilled water during each testing period Group 1 : immersed in staining solution for 6 hours Group 2 : immersed in staining solution for 24 hours Group 3 : immersed in staining solution for 72 hours Staining tendency was evaluated by total color difference(${\Delta}E^*$) of specimen before and after staining by spectorcolorimeteric readings (ColorQUEST Spectrophotometer, U.SA.). The results were as follows : 1. The total color differences of each testing materials were increased with time. 2. Among the experimental groups, the Fuji II Glass Ionomer Cement showed the highest total color difference(6.803) and the Silux Plus showed the lowest total color difference(1.637). 3. In comparison of glass ionomer cements, the total color difference of chemical cured glass ionomer cements(6.803) were higher than light cured glass ionomer cements(3.891) (P<0.01). 4. In comparison of composite resins, the P-50 showed the highest total color difference and the Silux Plus showed the lowest total color difference, but there was not significant difference among composite resins(P>0.05).

  • PDF

AMOUNT OF POLYMERIZATION SHRINKAGE AND SHRINKAGE STRESS IN COMPOSITES AND COMPOMERS FOR POSTERIOR RESTORATION (광중합형 구치부 수복재료의 중합수축량과 중합수축력)

  • Park, Sung-Ho;Lee, Soon-Young;Cho, Yong-Sik;Kim, Su-Sun;Lee, Chang-Jae;Kim, Young-Joo;Lee, Bong-Hee;Lee, Kouang-Sung;Noh, Byung-Duk
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.4
    • /
    • pp.348-353
    • /
    • 2003
  • The purpose of present study was to evaluate the polymerization shrinkage stress and amount of linear shrinkage of composites and compomers for posterior restoration. For this purpose, linear polymerization shrinkage and polymerization stress were measured. For linear polymerization shrinklage and polymerization stress measurement, custom made Linometer (R&B, Daejon, Korea) and Stress measuring machine was used (R&B, Daejon, Korea). Compositers and compomers were evaluated: Dyract AP (Dentsply Detrey, Gumbh. German) Z100 (3M Dental Products, St. Paul. USA) Surefil (Dentsply Caulk, Milford, USA) Pyramid (Bisco, Schaumburg, USA) Synergy Compact (Coltene, Altstatten, Switzerland), Heliomolar (Vivadent/Ivoclar, Liechtenstein), and Compoglass (Vivadent Ivoclar/Liechtenstein) were used. 15 measurements were made for each material. Linear polymerization shrinkage or polymerization stress for each material was compared with one way ANOVA with Tukey at 95% levels of confidence. For linear shrinkage: Heliomolar, Surefil