• Title/Summary/Keyword: 수목생장률

Search Result 26, Processing Time 0.021 seconds

Effect of Wind Break on the Early Growth of Pinus thunbergii at Saemangum Sea-wall (새만금 방조제에서 곰솔의 초기 생장에 미치는 방풍 시설 설치 효과)

  • Kim, Jeong-Hwan;Lim, Joo-Hoon;Seo, Kyung-Won;Jeong, Yong Ho;Um, Tae-Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.210-218
    • /
    • 2013
  • The sea breeze shows different characteristics compared to land breeze, such as high wind speed and more rapider shift period. One of the major factors affecting plant early growth is wind speed. In the early growth stage, tree growth-rates rise with decreasing wind speed. Thus, the study was performed to identify wind break effects on wind characteristics and tree growth. The wind break used in this study was about 130 meters length and 3 meters height, made up with poly-ethylene (with 40% openness). We installed one vane and fifteen anemographs at three different heights (1, 2 and 3 meters) on the inner and outer wind break areas. The wind characteristic and plant growth data were collected from Jun. 2011 to Oct. over 2012. The wind rose of the Saemangum seawall area presented the north (21.5%) and it was followed by north-west (18.1%), east (14.9%) and north-east (13.7%) and the remainder with other directions. Wind speeds at height were different. The tree height was 159.6 cm at inside and 129.6 cm at outside. The diameter at root-collar was 36.9 mm at inside and 32.6 mm at outside from wind break.

Growth and Physiological Responses of Two Pine Species Grown under Polluted Ansan Industrial Region (안산 공단지역에 식재된 소나무류 2종의 생장과 생리학적 반응)

  • Jin, Hyun-O;Choi, Dong-Su;Lee, Choong-Hwa;Jeong, Yong-Ho;Koike, Takayoshi
    • The Korean Journal of Ecology
    • /
    • v.28 no.5
    • /
    • pp.321-326
    • /
    • 2005
  • We investigated the effects of pollutants on two pine species (Pinus koraiensis and Pinus rigida) in an industrial region, using a physiological approach. We measured the growth and physiological parameters (photosynthetic activity and chemical contents) of the pine trees in relation to environmental pollutants. The concentrations of manganese (Mn), fluorine (F) and chlorine (CI) in needles of two pine species at the damaged site were significantly higher than those at the control site, and concentrations of essential elements (P) and chlorophyll in needles at the damaged site were significantly lower than at the control site. The light-saturated net photosynthesis $(P_{sat})$, apparent quantum yield $(\Phi)$, carboxylation efficiency (CE) of both pines at the damaged site were significantly lower than those at the control site. The length of shoots and survivorship of needles of two pines at the damaged site were significantly lower than those at the control site. Especially, at damaged site, growth of shoots and needle longevity of P. koraiensis are larger than those of P. rigida.

Effects of Forest Restoration Methods and Stand Structure on Microclimate in Burned Forest Stand (산불 피해지 복원 방법이 임분 내 미세 기후에 미치는 영향)

  • Kim, Jeong Hwan;Lim, Joo-Hoon;Park, Chanwoo;Kwon, Jino;Choi, Hyung Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.3
    • /
    • pp.207-216
    • /
    • 2015
  • The study was conducted to determine the effects of forest restoration methods and stand structure on solar radiation, air temperature, relative humidity, soil temperature, and soil water content, based on volume, in forest stand after forest fire. The changes of the micro-climate elements in naturally and artificially restored forest after forest fire were measured in Goseong and Samcheok, Gangwon province. Pinus spp. were commonly appeared in ridges, barren lands or planted areas of the study sites while the other areas were dominated by Quercus spp. In the early stage, trees in the naturally regenerated site grow better than the trees in artificially rehabilitated site. However, the growth ratio rapidly decreased by time passed in natural regeneration area. The environmental conditions (solar radiation, air temperature, relative humidity, soil temperature and soil water content) were significantly different by the regions and the methods (p<.05). However, the coefficients of variations of the environmental conditions were not significantly different at 95% confidence level. As the coverage and tree height in crown layer increased, the relative humidity and soil water content were increased while the temperature and solar radiation were decreased. Especially, the relative humidity, solar radiation, and soil water content were clearly affected by the tree height and coverage ratio ($R^2$ means from 0.628 to 0.924). Even though the data should have collected at least more than 5 years in meteorological analysis, the two year results show some clear relationship between forest structure and microclimate elements.

Effects and Improvement of Carbon Reduction by Greenspace Establishment in Riparian Zones (수변구역 조성녹지의 탄소저감 효과 및 증진방안)

  • Jo, Hyun-Kil;Park, Hye-Mi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.16-24
    • /
    • 2015
  • This study quantified storage and annual uptake of carbon for riparian greenspaces established in watersheds of four major rivers in South Korea and explored desirable strategies to improve carbon reduction effects of riparian greenspaces. Greenspace structure and planting technique in the 40 study sites sampled were represented by single-layered planting of small trees in low density, with stem diameter at breast height of $6.9{\pm}0.2cm$ and planting density of $10.4{\pm}0.8trees/100m^2$ on average. Storage and annual uptake of carbon per unit area by planted trees averaged $8.2{\pm}0.5t/ha$ and $1.7{\pm}0.1t/ha/yr$, respectively, increasing as planting density got higher. Mean organic matter and carbon storage in soils were $1.4{\pm}0.1%$ and $26.4{\pm}1.5t/ha$, respectively. Planted trees and soils per ha stored the amount of carbon emitted from gasoline consumption of about 61 kL, and the trees per ha annually offset carbon emissions from gasoline use of about 3 kL. These carbon reduction effects are associated with tree growth over five years to fewer than 10 years after planting, and predicted to become much greater as the planted trees grow. This study simulated changes in annual carbon uptake by tree growth over future 30 years for typical planting models selected as different from the planting technique in the study sites. The simulation revealed that cumulative annual carbon uptake for a multilayered and grouped ecological planting model with both larger tree size and higher planting density was approximately 1.9 times greater 10 years after planting and 1.5 times greater 30 years after than that in the study sites. Strategies to improve carbon reduction effects of riparian greenspaces suggest multilayered and grouped planting mixed with relatively large trees, middle/high density planting of native species mixed with fast-growing trees, and securing the soil environment favorable for normal growth of planting tree species. The research findings are expected to be useful as practical guidelines to improve the role of a carbon uptake source, in addition to water quality conservation and wildlife inhabitation, in implementing riparian greenspace projects under the beginning stage.

The Effect of Rubber Banding Material on Root Development after Transplanting of Landscape Trees - For Pine Trees - (고무밴드 결속재가 조경수목 이식 후 뿌리발달에 미치는 영향 - 소나무류를 대상으로 -)

  • Park, Hyun;Park, Yong-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.52-62
    • /
    • 2015
  • This study conducted an experiment to clarify the effect of rubber bands used as a root connector during the process of transplanting landscape trees on the development of the root system and the rooting process. The research period was four years, from April 2007 to April 2011, and the test conducted for this study was performed at the experimental field located at 398-2 Bangdong-ri, Sacheon-myeon, Gangneung-si, Gangwon-do. Twenty 15-year-old Pinus densiflora Siebold & Zucc. with good growth conditions were harvested and transplanted from the forest in Jebi-ri, Gujeong-myeon, Gangneung-si, Gangwon-do for the field experiment. A completely randomized design was applied for plot design, with 10 pines without rubber bands and 10 pines with rubber bands. Pinus densiflora for. multicaulis Uyeki was selected as the official tree of the pot test and was planted in a transparent pot to observe the development of the root system. A completely randomized design was applied for plot design, with 3 pines without rubber bands and 3 pines with rubber bands. The results of this research on the effect of rubber bands used as a root connector on root system development and the rooting process are as follows. 1. The rate of height growth in the field test was 4.1% lower in the trees with rubber bands when compared to trees without rubber bands. Trees with rubber bands were 4.2% wider than those without rubber bands in root diameter. The chlorophyll content was 6.8% higher in trees without rubber bands, but the rate of height growth, root diameter, and chlorophyll content were not significantly correlated. 2. In the comparison of fresh root weight in the field test, trees with rubber banding had roots weighing 1,740.0kg and those without rubber bands had roots weighing 1,433.3kg. Root dry weight was 522.3g in trees with rubber bands and 450.0g in those without rubber bands, but showed no significant difference depending on whether the rubber band was attached. 3. In a comparison of root number between surfaces touching and not touching the rubber band in trees with rubber banding, the surface touching the rubber band was observed to have more roots growing, the difference of which was deemed significant. 4. The shoot growth rate in the pot test was 1.1% higher in trees without rubber bands when compared with trees with rubber bands. The chlorophyll content was 0.02 higher in trees with rubber bands but the difference was not significant. 5. In the pot test, no significance was found in comparison of root number, root length, and root dry weight in trees with and without rubber bands. These test results imply that removing rubber bands as a connector does not present any significant effects on the ground growth or root development of transplanted pine trees. As it is shown that surface touching rubber bands grow more roots in trees with rubber bands, more active related research must be undertaken.

A Study on Model Development for the Density Management of Overcrowded Planting Sites and the Planting Design of New Planting Sites - A Case Study of Buffer Green Spaces in the Dongtan New Town, Hwaseong - (과밀식재지 밀도관리 및 신규식재지 배식설계 모델 개발 연구 - 화성시 동탄신도시 완충녹지를 대상으로 -)

  • Choi, Jin-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.5
    • /
    • pp.82-92
    • /
    • 2018
  • The purpose of this study is to develop a model for the density management of planting sites and an additional model for new planting sites. In the Dongtan New Town of Hwaseong, there are buffer green spaces, with widths between 8m and 15m, between roads and apartment complexes. A total 38 survey plots were set to examine the planting patterns and the density of landscape trees. The Crown Overlapping Index (COI) was developed to assess the level of overcrowding as far as tree growth and development effectively. Pinus strobus recorded the most serious level of overcrowding growth and development. Its average density and average COI were very high at $0.3trees/m^2$ and 35.6%, respectively. There were many areas in which its COI was above 45%. The criteria for density management were set by standardizing the COI into three levels, which were above 45% (Type A), 30~45% (Type B), and under 30% (Type C). A model was proposed to manage poorly growing trees and to develop a model to select and manage trees of similar specification based on the planting patterns. The trees of density management areas were reviewed in terms of tree types and the ease of transplanting to establish an application system for the management plans according to the possibility of transplanting, thinning, and pruning. In new buffer green spaces, the planting density of Pinus strobus was lowered to $0.20{\sim}0.25trees/m^2$, with that of shrubs being reduced to $1.5{\sim}2.0trees/m^2$, leading to a planting design model to cover the lower parts in at least 30~40%.

Species-specific Growth Responses of Betula costata, Fraxinus rhynchophylla, and Quercus variabilis Seedlings to Open-field Artificial Warming (거제수나무, 물푸레나무, 굴참나무 묘목의 실외 인위적 온난화에 대한 수종 특이적 생장 반응)

  • Han, Saerom;An, Jiae;Yoon, Tae Kyung;Yun, Soon Jin;Hwang, Jaehong;Cho, Min Seok;Son, Yowhan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.219-226
    • /
    • 2014
  • Evaluation of tree responses to temperature elevation is critical for a development of forest management techniques coping with climate change. We conducted a study on the growth responses of Betula costata, Fraxinus rhynchophylla, and Quercus variabilis seedlings to open-field artificial warming. Artificial warming set-up using infra-red heater was built in 2012 and the temperature in warmed plots was regulated to be consistently $3^{\circ}C$ higher than that of control plots. The seeds of three species were sown, and the responses of growth, biomass allocation, and net photosynthetic rate of newly-germinated seedlings on the open-field artificial warming were determined. As a result, the growth responses of the seedlings differed with the species. B. costata showed decreases in the height to diameter ratio (H/D ratio), biomass, root weight to shoot weight ratio, and net photosynthetic rate. However, root collar diameter (RCD), height, biomass, and net photosynthetic rate of Q. variabilis were increased, while the response of F. rhynchophylla was rather obscure. There was no significant difference between warmed and control plots in seedling growth for 3 species in July, whereas, RCD, height, and H/D ratio of Q. variabilis were increased and H/D ratio of B. costata was decreased in November under warming. Species-specific growth responses to warming were similar to the species-specific responses of net photosynthetic rate and biomass allocation; therefore, net photosynthetic rate and biomass allocation might attribute to growth responses to warming. Besides, a relatively obvious response in autumn compared to summer might be affected by the phenological change following artificial warming. Species-specific responses of three deciduous species to warming in this study could be applied to the development of adaptive forest management policies to climate change.

Carbon Reduction by and Quantitative Models for Landscape Tree Species in Southern Region - For Camellia japonica, Lagerstroemia indica, and Quercus myrsinaefolia - (남부지방 조경수종의 탄소저감과 계량모델 - 동백나무, 배롱나무 및 가시나무를 대상으로 -)

  • Jo, Hyun-Kil;Kil, Sung-Ho;Park, Hye-Mi;Kim, Jin-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.3
    • /
    • pp.31-38
    • /
    • 2019
  • This study quantified, through a direct harvesting method, storage and annual uptake of carbon from open-grown trees for three landscape tree species frequently planted in the southern region of Korea, and developed quantitative models to easily estimate the carbon reduction by tree growth for each species. The tree species for the study included Camellia japonica, Lagerstroemia indica, and Quercus myrsinaefolia, for which no information on carbon storage and uptake was available. Ten tree individuals for each species (a total of 30 individuals) were sampled considering various stem diameter sizes at given intervals. The study measured biomass for each part of the sample trees to quantify the total carbon storage per tree. Annual carbon uptake per tree was computed by analyzing the radial growth rates of the stem samples at breast height or ground level. Quantitative models were developed using stem diameter as an independent variable to easily calculate storage and annual uptake of carbon per tree for study species. All the quantitative models showed high fitness with $r^2$ values of 0.94-0.98. The storage and annual uptake of carbon from a Q. myrsinaefolia tree with dbh of 10 cm were 24.0 kg and 4.5 kg/yr, respectively. A C. japonica tree and L. indica tree with dg of 10 cm stored 11.2 kg and 8.1 kg of carbon and annually sequestered 2.6 kg and 1.2 kg, respectively. The above-mentioned carbon storage equaled the amount of carbon emitted from the gasoline consumption of about 42 L for Q. myrsinaefolia, 20 L for C. japonica, and 14 L for L. indica. A tree with the diameter size of 10 cm annually offset carbon emissions from gasoline use of approximately 8 L for Q. myrsinaefolia, 5 L for C. japonica, and 2 L for L. indica. The study pioneers in quantifying biomass and carbon reduction for the landscape tree species in the southern region despite difficulties in direct cutting and root digging of the planted trees.

Growth and Physiological Responses of Indeciduous Quercus L. in Container by Fertilizing Treatment (시비 처리에 따른 상록 참나무속 수목의 용기 내 생장 및 생리적 반응)

  • Kim, Jong Jin;Lee, Seung Hak;Song, Ki Seon;Jeon, Kwon Seok;Choi, Jin Young;Choi, Kyu Seong;Lee, Seok Noh;Sung, Hwan In
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.372-380
    • /
    • 2014
  • BACKGROUND: This study was carried out in order to closely examine the influence of fertilization upon growth in container of seedling in indeciduous Quercus species (Q. mysinaefolia, Q. acuta and Q. glauca). METHODS AND RESULTS: Fertilizer level was made by adjusting water soluble compound fertilizer (N:P:K=19: 19:19, v/v) to 1000, 2000, $3000mg{\cdot}L^{-1}$ level along with non-fertilizing plot. Fertilization increased height, root collar diameter growth, and dry weight in these three species of trees. The more increase in fertilizer level led to the more rise even in growth of these species. H/D ratio and T/R ratio also showed tendency of getting bigger in the more rise in fertilizer level. Photosynthetic rate was shown to get higher in the higher fertilizer level according to fertilization in all the three species. In the analysis of root morphological traits, the total root length was surveyed to be longer in the more rise in fertilizer concentration. As even a case of root project area, surface area, and root volume is the similar tendency to characteristics in the total root length, a rise depending on fertilization was observed. CONCLUSION: In light of the results in this experiment, the fertilizer level is judged to be $2000mg{\cdot}L^{-1}$ level that is proper for production of 1-year-old container seedling in indeciduous Quercus species with excellent root development and high seedling quality index.

Shading Treatment-Induced Changes in Physiological Characteristics of Thermopsis lupinoides (L.) Link (차광처리에 따른 갯활량나물의 생리 특성)

  • Seungju Jo;Dong-Hak Kim;Jung-Won Yoon;Eun Ju Cheong
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.2
    • /
    • pp.198-209
    • /
    • 2024
  • This study aimed to investigate the impact of light intensity, manipulated through different shading levels, on the growth and physiological responses of Thermopsis lupinoides. To assess the effects of shading treatments, we examined leaf mass per area, chlorophyll content, chlorophyll fluorescence response, and photosynthetic characteristics. T. lupinoidesexhibited adaptive responses under low light conditions (50% shading), showing increased leaf area and decreased leaf mass per area as shading levels increased. These changes indicate morpho-physiological adaptations to reduced light availability. At 50% shading, the physiological and ecological responses were favorable, with optimal photosynthetic functions including chlorophyll content, photosynthesis saturation point, photosynthetic rate, carbon fixation efficiency, stomatal conductance, transpiration rate, and water use efficiency. However, at 95% shading, the essential light conditions for growth were not met, significantly impairing photosynthetic functions. Consequently, 50% shading was determined to be the most optimal condition for T. lupinoides growth. These findings provide valuable insights for effective ex-situconservation practices and site selection for T. lupinoides, serving as foundational data for habitat restoration efforts.