Browse > Article
http://dx.doi.org/10.5338/KJEA.2014.33.4.372

Growth and Physiological Responses of Indeciduous Quercus L. in Container by Fertilizing Treatment  

Kim, Jong Jin (Dept. of Environmental Planning, Konkuk University)
Lee, Seung Hak (Korea Forestry Promotion Institute)
Song, Ki Seon (Southern Forest Resources Research Center, Korea Forest Research Institute)
Jeon, Kwon Seok (Southern Forest Resources Research Center, Korea Forest Research Institute)
Choi, Jin Young (Dept. of Environmental Sciences, Graduate School of Konkuk University)
Choi, Kyu Seong (Dept. of Environmental Sciences, Graduate School of Konkuk University)
Lee, Seok Noh (Dept. of Environmental Sciences, Graduate School of Konkuk University)
Sung, Hwan In (Dept. of Forest and Landscape, Graduate School of Agriculture and Animal Science, Konkuk University)
Publication Information
Korean Journal of Environmental Agriculture / v.33, no.4, 2014 , pp. 372-380 More about this Journal
Abstract
BACKGROUND: This study was carried out in order to closely examine the influence of fertilization upon growth in container of seedling in indeciduous Quercus species (Q. mysinaefolia, Q. acuta and Q. glauca). METHODS AND RESULTS: Fertilizer level was made by adjusting water soluble compound fertilizer (N:P:K=19: 19:19, v/v) to 1000, 2000, $3000mg{\cdot}L^{-1}$ level along with non-fertilizing plot. Fertilization increased height, root collar diameter growth, and dry weight in these three species of trees. The more increase in fertilizer level led to the more rise even in growth of these species. H/D ratio and T/R ratio also showed tendency of getting bigger in the more rise in fertilizer level. Photosynthetic rate was shown to get higher in the higher fertilizer level according to fertilization in all the three species. In the analysis of root morphological traits, the total root length was surveyed to be longer in the more rise in fertilizer concentration. As even a case of root project area, surface area, and root volume is the similar tendency to characteristics in the total root length, a rise depending on fertilization was observed. CONCLUSION: In light of the results in this experiment, the fertilizer level is judged to be $2000mg{\cdot}L^{-1}$ level that is proper for production of 1-year-old container seedling in indeciduous Quercus species with excellent root development and high seedling quality index.
Keywords
Fertilization level; Indeciduous Quercus species; Photosynthetic rate; Root development; Seedling quality index;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Gilman, E.F., Stodola, A., Marshall, M.D., 2002. Root pruning but not irrigation in the nursery affects Live Oak root balls and digging survival, J. Environ. Hort. 20, 122-126.
2 Haase, D.L., 2007. Morphological and physiological evaluation of seedling quality, in: Riley, L.E., Dumroese R.K., Landes, T.D. (Eds), Proceedings of the conference "Forest and Conservation Nursery Associations- 2006", RMRS-P-50, USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, USA, pp. 3-8.
3 Haase, D.L., 2008. Understanding forest seedling quality: measurements and interpretation, Tree Planter's Notes 52, 24-30.
4 Harris, R.W., Davis, W.B., Stice, N.W., Long, D., 1971. Root pruning improves nursery tree quality, J. Amer. Soc. Hort. Sci. 96, 105-108.
5 Hathaway, R.D., Whitcomb, C.E., 1984. Nutrition and performance of container-grown Japanese black pine seedlings, J. Environ. Hort. 2, 9-12.
6 Ingestad, T., 1979. Mineral nutrient requirement of Pinus silvestris and Picea abies seedlings, Physiol. Plant 45, 373-380.   DOI
7 Kim, P.G., Yi, Y.S., Chung, D.J., Woo, S.Y., Sung, J.H., Lee, E.J., 2001. Effects of light intensity on photosynthetic activity of shade tolerant and intolerant tree species, J. Korean For. Soc. 90, 476-487.
8 Kim, S.H., Saung, J.H., Kim, Y.K., Kim, P.K., 2008. Photosynthetic responses of four oak species to changes in light environment, Kor. J. Agric. Meteorol 10, 141-148.   과학기술학회마을   DOI
9 Kwon, K.W., Lee, J.H., 1994. Growth performances and physiological responses of Quercus spp. and Fraxinus rhychonphylla subjected to different soil moisture regimes and nutrition levels, J. Korean For. Soc. 83, 164-174.
10 Oh, M.Y., 1982. Production of sound seedlings and root pruning, Sanlim 10, 5-17.
11 Park, B.B., Byun, J.K., Kim, W.S., Sung, J.H., 2010. Growth and tissue nutrient responses of Fraxinus rhynchophylla, Fraxinus mandshurica, Pinus koraiensis , and Abies holophylla seedlings fertilized with nitrogen, phosphorus, and potassium at nursery culture, J. Korean For . Soc. 99, 85-95.   과학기술학회마을
12 Park, J.C., Yang, K.C., Jang, D.H., 2010. The movement of evergreen broad-leaved forest zone in the warm temperate region due to climate change in South Korea, J. Climate Research 5, 29-41.
13 Park, S.G., Oh, K.K., 2002. Conservation status and restoration of the evergreen broad-leaved forests in the warm temperate region, Korea (I) - distribution of the evergreen broad-leaved forests and category of degraded levels -, Kor. J. Env. Eco. 16, 309-320.   과학기술학회마을
14 Phillion, B.J., Libby, M., 1984. Growth of potted black spruce seedlings at a range of fertilizer levels, The Plant Propagator 30, 10-11.
15 Ritchie, G.A. 1984. Assessing seedling quality, in: Duryea, M.L., Landis, T.D. (Eds), Forest Nursery Manual 1 : Production of Bareroot Seedlings, Martinus Nijhoff Publishers, Netherlands, pp. 243-259.
16 Shin, H.C., Park, N.C., Hwang, J.H., 2006. Warm Temperate Tree Species in Korea, Korea Forest Research Institute, Korea. pp. 26-37.
17 Shin, J.A., Son, Y.H., Hong, S.G., Kim, Y.K., 1999. Effect of N and P fertilization on nutrition use efficiency of Pinus densiflora, Larix leptolepis , and Betula platyphylla var. japonica seedlings, Korean J. Environ. Agric. 18, 304-309.
18 Sung, H.I., Song, K.S., Cha, Y.G., Kim, J.J., 2011. Characteristics of growth and seedling quality of 1-year-old container seedlings of Quercus myrsinaefolia by shading and fertilizing treatment, J. Korean For. Soc. 100, 598-608.
19 Song, K.S., Jeon, K.S., Choi, K.S., Choi, J.Y., Sung, H.I., Kim, J.J., 2014. Growth characteristics of Daphniphyllum macropodum seedlings of warm-temperate landscape tree by shading and fertilization treatment: Research on seedling production of D. macropodum by container nursery for meteorological disasters, J. Climate Research 9, 65-76.   DOI
20 Song, K.S., Sung, H.I., Cha, Y.G., Kim, J.J., 2011. Growth and physiological responses of 1-year-old containerized seedlings of Quercus myrsinaefolia by shading treatment, J. of Bio-Environment Control 20, 373-381.
21 Switzer, G.L., Nelson, L.E., 1963. Effects of nursery fertility and density on seedling characteristics yield, and field performance of lobloly pine (Pinus taeda L.), Soil Sci. Soc. Amer. Proc. 27, 461-464.   DOI
22 Timmer, V.R., Armstrong, G., 1987. Diagnosing nutritional status of containerized tree seedlings : comparative plant analyses, Soil Sci. Soc. Amer. J. 51, 1082-1086.   DOI   ScienceOn
23 Wang, R.Z., 2001. Photosynthesis, transpiration and water use efficiency of vegetative and reproductive shoots of grassland species from north-eastern China, Photosynthetica 39, 569-573.   DOI   ScienceOn
24 Wang, M.B., Zhang, Q., 2009. Issues in using the WinRHIZO system to determine physical characteristics of plant fine roots, Acta Ecologica Sinica 29, 136-138.   DOI   ScienceOn
25 Yoon, T.S., Hong, S.G., 2002. Studies on production of high-quality Cornus controversa container seedlings, J. Kor. For. En. 21, 28-33.   과학기술학회마을
26 Byun, J.K., Kim, Y.S., Yi, M.J., Son, Y.H., Kim, C.S., Jeong, J.H., Lee, C.Y., Jeong, Y.H., 2007. Growth response of Pinus densiflora, Larix leptolepis, Betula platyphylla var. japonica and Quercus acutissima seedlings at various levels of fertilization, J. Korean For. Soc. 96, 693-698.   과학기술학회마을
27 Alexander, A., Schroeder, M., 1987. Modern trends in foliar fertilization, J. Plant Nutrition 10, 1391-1399.   DOI
28 Arsenault, J.L., Poulcur, S., Messier, C., Guay, R., 1995. WinRHIZO, a root-measuring system with a unique overlap correction method, HortScience 30, 906.
29 Bouma, T.J., Nielsen, K.L., Koutstaal, B., 2000. Sample preparation and scanning protocol for computerized analysis of root length and diameter, Plant and Soil 218, 185-196.
30 Faria, T., Garcia-Plazaola, J.I., Abadia, A., Cerasoli, S. Pereira, J.S. and Chaves, M.M., 1996. Diurnal changes in photoprotective mechanism in leaves of cork oak (Quercus suber ) during summer, Tree Physiology 16, 115-123.   DOI   ScienceOn
31 Fox, J.E.D., Surata, I.K., Suriamidhardja, S. 1990. Nursery potting mixture for Santalum album L. in Timor. Mulga Research Centre Journal 10, 38-44.
32 Gilman, E.F., Harchick, C., Wiese, C., 2009. Pruning roots affects tree quality in container grown oaks, J. Environ. Hort. 27, 7-11.
33 Lee, B.S., Yoon, J.K., Lee, M.B., Jeong, Y.H., Park, S.K., Oh, M.Y., Noh, K.H., Kim, D.K., 1984. Findings on proper root pruning methods and its optimum implementing times of the major silvicultural species, For. Rep. For. Res. Inst. Korea 31, 31-45.
34 Kwon, K.W., Cho, M.S., Kim, K.N., Lee, S.W., Jang, K.H., 2009. Photosynthetic characteristics and growth performances of containerized seedling and bare root seedling of Quercus acutissima growing at different fertilizing schemes, J. Korean For. Soc. 98, 331-338.   과학기술학회마을
35 Landis, T.D., Tinus, R.W., McDonald, S.E., Barnett, J.P., 1992. The Container Tree Nursery Manual, Vol. 3, Atmospheric Environment, Agriculture Handbook 674. ISBN 0-16-035885-X. USDA Forest Service, Washington DC. pp. 2-138.
36 Landis, T.D., Tinus, R.W., McDonald, S.E. and Barnett, J.P. 1995. The Container Tree Nursery Manual. Vol. 1. Nursery Panning, Development and Management, Agriculture handbook 674. ISBN 0-16-045552-9. USDA Forest Service, Washington DC. pp. 102-113.
37 Lee, C.B., 1999. Dendrology, pp. 148-158, fifth ed. Hyangmoonsa, Korea.
38 Lim, J.H., Woo, S.Y., Kwon, M.J., Chun, J.H., Shin, J.H., 2006. Photosynthetic capacity and water use efficiency under different temperature regimes on healthy and declining Korean fir in Mt. Halla, J. Korean For . Soc. 95, 705-710.   과학기술학회마을
39 Oh, K.K., Choi, S.H., Na, K.T., Kim, S.H., 2004. Monitoring for the restoration of evergreen broad-leaved forest in warm temperate region (II), Kor. J. Env. Eco. 17, 316-323.   과학기술학회마을
40 Oh, K.K., Kim, Y.S., 1996. Restoration model of evergreen broad-leaved forests in warm temperate region (I) - vegetational structure -, Kor. J. Env. Eco. 10, 87-102.   과학기술학회마을
41 Hipps, N.A., Higgs, K.H., Collard, L.G., 1997. Effects of root wrenching and irrigation rate on the growth and water relations of Castanea sativa and Quercus robur seedlings in the nursery and after outplanting, Can. J. For. Res. 27, 180-188.   DOI
42 Yun, J.H., Kim, J.H., Oh, K.H., Lee, B.Y., 2011. Distributional change and climate condition of warm- temperate evergreen broad-leaved tree in Korea, Kor. J. Env. Eco. 25, 47-56.