DOI QR코드

DOI QR Code

Effects of Forest Restoration Methods and Stand Structure on Microclimate in Burned Forest Stand

산불 피해지 복원 방법이 임분 내 미세 기후에 미치는 영향

  • Received : 2015.02.17
  • Accepted : 2015.07.29
  • Published : 2015.09.30

Abstract

The study was conducted to determine the effects of forest restoration methods and stand structure on solar radiation, air temperature, relative humidity, soil temperature, and soil water content, based on volume, in forest stand after forest fire. The changes of the micro-climate elements in naturally and artificially restored forest after forest fire were measured in Goseong and Samcheok, Gangwon province. Pinus spp. were commonly appeared in ridges, barren lands or planted areas of the study sites while the other areas were dominated by Quercus spp. In the early stage, trees in the naturally regenerated site grow better than the trees in artificially rehabilitated site. However, the growth ratio rapidly decreased by time passed in natural regeneration area. The environmental conditions (solar radiation, air temperature, relative humidity, soil temperature and soil water content) were significantly different by the regions and the methods (p<.05). However, the coefficients of variations of the environmental conditions were not significantly different at 95% confidence level. As the coverage and tree height in crown layer increased, the relative humidity and soil water content were increased while the temperature and solar radiation were decreased. Especially, the relative humidity, solar radiation, and soil water content were clearly affected by the tree height and coverage ratio ($R^2$ means from 0.628 to 0.924). Even though the data should have collected at least more than 5 years in meteorological analysis, the two year results show some clear relationship between forest structure and microclimate elements.

본 연구는 산불 피해지에서 복원 방법 및 수종의 구성에 따라 미세 기후가 어떻게 변하는지에 관한 연구는 거의 이루어진 바 없어 산불 피해지에서 복원 방법 및 임분의 구성에 따라 임분 내 기상 패턴이 어떻게 변화하는지에 대해 구명하고자 수행되었다. 본 연구에서 사용된 독립 변수로 임분을 구성하는 수종의 종류와 생장, 임분 밀도, 그리고 피복율이며, 이에 따른 종속 변수로는 임분 내 광량, 기온, 습도, 토양 온도, 그리고 토양 수분 함량이었다. 기상 조건은 대부분 광 조건에 영향을 받는 종속 변수이나, 임분을 구성하는 수목의 생장과 피복률에도 변화하는 것으로 나타났다. 임분 내 습도는 임분 밀도와, 임분 내 기온과 수목의 수고와 음(-)의 상관 관계에 있는 것으로 나타나 임분 밀도와 수목의 생장이 증가할수록 임분 내부의 기온과 습도는 상대적으로 감소하는 경향을 보였다. 그러나 임분의 발달은 대부분 미세 기후의 전체 평균보다는 변동계수와 같은 편차를 줄이는 형태로 더 큰 영향을 주었으며, 수관 층의 수고와 임분 내 광량과 직접적인 관계에 있는 것을 감안하면($R^2$=0.87), 임분의 구조는 광량에는 직접적인 영향을, 다른 미세 기후에는 간접적인 영향을 준 것으로 사료된다. 한편 변동계수의 경우 삼척 지역이 고성 지역보다 상대적으로 높은 값을 보였으며, 수목의 생장에 따라 감소하는 경향을 보였다. 따라서 산불 발생 이후 시간 경과에 따라 상대적으로 안정된 상태를 지니는 것으로 해석되었다. 그러나, 현재 단계에서는 산불 피해 이후 숲의 발달에 따른 임분 내부의 기상 조건의 변화상을 뚜렷하게 확인하고 일반화하기에는 많은 어려움이 있어 이를 위해서는 보다 긴 시간에 걸쳐 많은 지점에서의 기상 조건과 임분 현황을 지속적으로 조사되어야 할 것이다. 이후 일반화된 자료를 활용한다면, 임분 구조와의 관계 해석은 물론, 하층 식생 출현 등에 대한 해석에 도움이 될 것으로 기대된다.

Keywords

References

  1. Bader, Y. M., V. I. Geoloof and M. Rietkerk, 2007: High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador. Plant Ecology 191(1), 33-45.
  2. Barnes, V. B., D. R. Zak, S. R. Denton, and Stephen H. Spurr, 1998: Forest ecology (4th ed.). New York: John Wiley & Sons, Inc., 792pp.
  3. Chen, J., S. C. Saunders, T. R. Crow, R. J. Naiman, K. D. Brosfske, G. D. Mroz, B. L. Brookshire, and J. F. Franklin, 1999: Microclimate in forest ecosystem and landscape ecology variations in local climate can be used to monitor and compare the effects of different management regimes. BioScience 49(9), 288-297. https://doi.org/10.2307/1313612
  4. Cho, H., D. G. Choi, S. D. Oh, and J. Ryu, 2001: Prediction model of growth and fruit characteristics of pear in relation to local climate and terms of location in Jeollabukdo. Korean Journal of Horticultural Science and Technology 19(2), 74.
  5. Clark, J. S., and J. S. McLachlan, 2003: Stability of forest biodiversity. Nature 423, 635-638. https://doi.org/10.1038/nature01632
  6. Dickey, D. A., and W. A. Fuller, 1979: Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74, 427-431.
  7. Dong, S. X., S. J. Davies, P. S. Ashton, S. Bunyavejchewin, M. N. Supardi, A. R. Kassim, S. T. Sylvester, and P. R. Moorcroft, 2012: Variability in solar radiation and temperature explains observed patterns and trends in tree growth rates across four tropical forests. Proceeding of Royal Society of Biological Science 279(1744), 3923-3931. https://doi.org/10.1098/rspb.2012.1124
  8. Gonzlez-Prez, J. A., G. Almendros, F. J. Gonzlez-Vila, and H. Knicker, 2004: The effect of fire on soil organic matter-a review. Environment International 30(6), 855-870. https://doi.org/10.1016/j.envint.2004.02.003
  9. Keith, L. B., and S. C. Gaylon, 1984: On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agricultural and Forest Meteorology 31(2), 159-166. https://doi.org/10.1016/0168-1923(84)90017-0
  10. Korea Meterological Administration, 2009: Weather resource database. [Online] Available at: http://www.kma.go.kr/weather/observation/data_monthly.jsp(2013.08.29)
  11. Krasnov, B. R., I. S. Khokhlova, L. J. Fielden, and N. V. Burdelova, 2001: Effect of air temperature and humidity on the survial of preimaginal stages of two fiea species (Siphonaptera: pulicidae). Journal of Medical Entomology 38(5), 629-637. https://doi.org/10.1603/0022-2585-38.5.629
  12. Lee, J., J. Hong, J. Yi, Y. M. Chun, and J. Lee, 2013: Characteristic of seed germination of Dendropanax morifera according to temperature and light factors for estimating change of habitat area in global warming. Journal of Climate Research 8(2), 143-151. https://doi.org/10.14383/cri.2013.8.2.143
  13. Lim, J. H., 2000: Forest fire and meterology of eastern Korea. Korean Journal of Agricultural and Forest Meteorology 2(2), 62-67.
  14. Lim, J., J. Kim, and S. Bae, 2012: Natural regeneration patten of pine seedlings on the burned forest site in Gosung, Korea. Korean Journal of Agricultural and Forest Meteorology 14(4), 222-228. https://doi.org/10.5532/KJAFM.2012.14.4.222
  15. McPherson, G. E., D. Nowak, G. Heisler, S. Grimmond, C. Souch, R. Grant, and R. Rowan, 1997: Quantifying urban forest structure, function, and value: the Chicago urban forest climate project. Urban Ecosystem 1(1), 49-61. https://doi.org/10.1023/A:1014350822458
  16. Messier, C., S. Parent, and Y. Bergeron, 1998: Effects of overstory and understory vegetation on the understory on the understory light envrionment in mixed boreal forest. Journal of Vegetation Science 9, 511-520. https://doi.org/10.2307/3237266
  17. Pearcy, W. R., 1983: The light environment and growth of C3. Oecologia 58, 19-25. https://doi.org/10.1007/BF00384537
  18. Rosenberg, N. J., B. L. Blad, and S. B. Verma, 1983: The biological environment: Microclimate (2nd ed.). John Wiley & Sons, Inc., 528pp.
  19. Shin J. H., 2012: Ecosystem geography of Korea : Lee, D. Ecology of Korea. Bumwoo Publishing Company, 19-46.
  20. Smith, J. T., 1992: 5. Forest structure. Tropical managrove ecosystems, A. I. Robertson and D. M. Alongi (Eds.), American Geophysical Union, 330pp.
  21. Stamper, J. H., and J. C. Allen, 1979: A model of the daily photosynthetic rate in a tree. Agricultural Meteorology 20(6), 459-481. https://doi.org/10.1016/0002-1571(79)90039-6
  22. Way, D. A., and R. Oren, 2010: Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology 30, 669-688. https://doi.org/10.1093/treephys/tpq015
  23. Wiens, J. A., 1974: Climatic instability and the "ecological saturation" of bird communities in north American grasslands. The Conder 76(4), 385-400. https://doi.org/10.2307/1365813