• Title/Summary/Keyword: 수모델

Search Result 10, Processing Time 0.026 seconds

Maximizing mixing power density in bottom blowing vessel by gas bubbling (저취반응용기에서 gas bubbling 시 교반력을 향상시키기 위한 연구)

  • 김창원;한정환;유병돈;김동식
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.154-154
    • /
    • 2003
  • 고품질의 합금강 생산 시 가장 큰 영향을 미치는 레이들정련은 고온 하에서 반응 및 유동이 일어나므로 실제조업 직접관찰이나 측정이 대단히 어려울 뿐만 아니라, 수많은 조업인자와 상호 결합되어 있기 때문에 최적의 작업조건을 찾는데 많은 시행착오를 겪는다. 본 실험에서는 직접 조업하는 조건과 가장 부합하는 수모델 실험 및 Flow 3D를 이용한 수치해석 방법으로 비용의 절감 및 실험에 대한 위험부담 등 시행착오를 최소화하면서 최적의 작업조건을 도출하여 고품질 합금강 생산성과 process 효율성의 극대화를 찾을 수 있다. 따라서 본 연구에서는 슬래그의 물성(슬래그 양, 점도)을 고려한 gas bubbling 조건(가스유량, 유체높이, ladle 크기, 단공nozzle, porous plug 위치)에 따른 용강의 교반특성 및 용강의 슬래그 혼입 거동을 조사함으로써 고청정 용강 제조를 위한 최적 gas bubbling 조건을 설정하기 위한 수모델 실험과 수치해석 연구를 실시하였다. 수모델 실험을 통한 기포형성 거동과 용강의 교반특성에 대한 현상론적 연구와 병행하여, 유동장 측면에서 이상유동을 가정한 수치해석을 통해 실제 용강 래들 내에서의 거동을 정량화 하고자 한다.

  • PDF

Influence of Droplet Size and Oil Viscosity on the Descending Velocity of Droplets Using Water Model With and Without Stirring (교반 유무에 따른 수모델을 사용한 액적의 하강 속도에 대한 액적 크기 및 오일 점도의 영향)

  • Hyeok-In Kwon;Alberto Conejo;Sung Yong Jung;Sun-Joong Kim
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.33-42
    • /
    • 2023
  • Metal emulsions have been studied for several decades as a method of increasing the efficiency of the steelmaking process. This study was performed using a water model, observable at room temperature, to compensate for the disadvantages of the high-temperature experiment, the results of which are difficult to observe visually. As a substitute for metal-in-slag emulsions, experiments were conducted by dropping distilled water into silicone oil and comparing the results with the results of a calculation by momentum balance equations. The descending velocity of the water droplet decreased as the diameter of the droplet and viscosity of the fluid (silicon oil) increased. To simulate the descending velocity of a water droplet in silicon oil under stirring conditions, the flow rate of the fluid (silicon oil) was measured by particle image velocimetry (PIV) methods. The calculation of the descending velocity of the water droplet was in good agreement with the measured values, with and without stirring a viscous silicone oil.

A Water Model Study on Molten Metal Flow in Die Cavity of Die Casting (다이캐스트 주물의 금형공동내에서 탕류에 관한 수모델적 연구)

  • Kim, Myung-Jae;Choi, Hee-Ho;Cho, Nam-Don
    • Journal of Korea Foundry Society
    • /
    • v.14 no.6
    • /
    • pp.576-589
    • /
    • 1994
  • Water modeling experiments and computer simulation for the predictions of defects of die castings are very important to produce high quality castings with less cost. The relation between the variable air vent system and the characteristics of the fluid flow in the die cavity is studied by using water modeling tests, which give ideas on reasonable designing of die cavity, vent arrangement and gating system. In order to test the water modeling, injection is done by using water containing NaCl. Flow behaviors in cavities are visualized by high speed camera and video tape recorder, and local filling time is measured with electrode sensors. Special attention is paid to the configuration of die cavity. Simulated results by computer are examined and compared with the results of water modeling experiments. There are close correlations between the simulated results and water modeling ones.

  • PDF

A Study on the Effects of the Filter on Flow Pattern of the Traditional Gating System by the Water Modeling Experiment (수모델 실험을 이용한 전통 탕구계의 유동 양상에 미치는 필터의 영향 연구)

  • Hwang, Ho-Young;Nam, Cheol-Hee;Choi, Young-Sim;Hong, Jun-Ho
    • Journal of Korea Foundry Society
    • /
    • v.36 no.6
    • /
    • pp.208-214
    • /
    • 2016
  • Casting defects, which are closely related to entrapped air bubbles and metallic oxides, occur very frequently in the casting process. Many researchers have shown that these defects can be reduced by adopting an appropriate gating system design. But, it is difficult for field engineers to identify a specific gating system that is more appropriate for their products. In this study, we tried to draw a comparison of gating system designs with and without ceramic foam filters. A ceramic foam filter was added to the horizontal runner just after the sprue to prevent air bubble generation and to reduce turbulence without change of the gating system design. To verify the effects of initial pouring velocity, the experiment was conducted with four different amounts of water volume in the reservoir. Results of the water modeling experiment applying the filter showed remarkably changed flow characteristics. Although the study confirmed that use of the filter may change the flow characteristics, it needs to be noted that only filter use alone cannot solve all the problems caused by a poorly designed gating system.

A Study on the Recycling of Aluminum Chip by Vortex Melting Method (Vortex melting법에 의한 알루미늄 chip의 재활용에 관한 연구)

  • 김정호;김경민;윤의박
    • Resources Recycling
    • /
    • v.6 no.4
    • /
    • pp.24-30
    • /
    • 1997
  • The recent trend of recycle of mold scrap is to make high quality secondary ingot which can be used as raw malerial undcr intensive control of scrap. In this study, recycle of aluminum chlp generated atter machinmg process of castings was performed by vortex melting melhod Vortex melting technique was adopted for chip mclting process. The condition far optimal vortcx depth was decided using water mndellng experiment varying the shape, location, rotating speed of stlircr and watcr levcl. Before melting, chips were preheated at room temperame, 200, 300, $ 400^{\circ}C$and then submerged in the mirldle of vortex. The lecovery rale depending on the temperature was examined. As a result vortex depth was influenccd only by shape and rotating speed of stirrer, and the hlghest recovery rate oI 97% was obta~nedw hcn the submerged chip was preheated at $300^{\circ}C.$

  • PDF

Mixing and Gas Removal Behavior in Scrap Remelt of Light Metal by Impeller Agitation (임펠러 교반에 의한 경량금속 스크랩 용해로에서의 혼합 및 탈 가스 거동)

  • 한정환;이주한;김석범;변지영;심재동
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.42-51
    • /
    • 1998
  • Hydrogen in atmosphere can easily dissolve in melt of light metal alloys. Increasing demand for recycling of light metal a alloys has, therefore, focused attention on the removal of hydrogen gas, and alloy addition in melt has become an imporLant r refining process. For this purpose behaviors of mixing and hydrogen degassing in impeller agitated refming vessel with/without barnes were investigated. Flow patterns, mixing time behavior and kinetics of degassing in various agitating conditions were analysed in watet model experiments. And, numerical analysis on turbulent flow pattern in impeller agitated vessels was performed.

  • PDF

Water Model Experiments of the Mixing Behavior of Polypropylene Particles by Vortex Stirrer (와류식 교반기를 이용한 폴리프로필렌 입자의 혼합 거동에 대한 수모델 연구)

  • Jung, Jaeyong;Lee, Joonho;Lee, Hyoungchul;Ki, Joonseong;Hwang, Jinill
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.122-128
    • /
    • 2012
  • Water model experiments were carried out to understand the mixing behavior of reducing agents in molten slag through vortex stirrer, which makes use of a gravitational energy to mix reducing agent in the molten slag without imparting artificial energy. At a water flow rate of 6 L/min vortex was not generated, and a stable vortex was formed when the water flow rate was 7 L/min or higher with the present experimental apparatus. Water level increased linearly with increasing the water flow rate. In the upper vortex region, the vertical and horizontal velocities slightly decreased with increasing the water flow rate, whereas those in the lower vortex region increased remarkably. Accordingly, strong mixing behavior was obtained in the lower vortex region. Owing to the strong centrifugal force, particles move downwards with approaching the funnel wall. When 40 grams of polypropylene particles added to the lower vortex, they were instantaneously mixed well.

Effects of Additional Bubbling on RH Vacuum Degassing Process with Water Model Experiment (수모델을 사용한 RH 진공 탈가스장치에서의 추가 버블링 효과)

  • Jang, Young-Hwan;Kim, Young-Tae;Yi, Kyung-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.424-429
    • /
    • 2010
  • In the RH process, it is possible to obtain quicker processing times by enhancing the decarburization rates at a low carbon range of steel melt through Ar gas injection into the vacuum vessel. The RH decarburization reaction was simulated through a dissolved oxygen removal reaction by injecting nitrogen into a 1/8 scale RH water model system. The gas nozzles for the N$_{2}$ injection into the vacuum vessel were located at the lowest level of the vessel's outer wall. The nitrogen bubbling in the vacuum vessel resulted in an increase in the reaction rate constant, which rose in accordance with an increase in the bubbling flow rate and number of nozzles used. However, there was almost no variation in the reaction rate constant, which depended on the horizontal positions of the bubbling nozzles.