• Title/Summary/Keyword: 수막시설

Search Result 26, Processing Time 0.027 seconds

Comparison of Effect on Fire Protection Tower for Waterproofing Time by FDS (FDS를 이용한 산불소화시설 방수시간에 따른 화재 영향 비교)

  • Kwon, Hyeon-Gyeong;Ko, Kyoung-Ju;Jang, Jun;Kim, Jong Bae
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.190-191
    • /
    • 2017
  • 본 연구는 산림 공간에서 산불소화시설인 수관수막타워의 방수시간에 따른 화재에 미치는 영향을 FDS(Fire Dynamics Simulator, 화재시뮬레이션)로 비교하였다. 본 연구를 진행하기 위한 기본 조건은 수관수막타워 높이 20m, 방수길이 40m, 방수량 400Lpm으로 해석공간 상에 수막타워를 3기 설치하였다. 수관수막타워 작동 초반 화재온도 $668.5^{\circ}C$에서 작동 450초 후 $145.6^{\circ}C$으로 감소되는 효과를 볼 수 있다. 이는 '산불소화시설 설치 및 운영 관리 지침'의 제3조 11절 6항의 '수관수막설비는 산불 접근 예상시간보다 10분전에 가동되도록 해야 한다.'의 타당성을 마련할 수 있다.

  • PDF

Change of Groundwater-Streamflow Interaction according to Groundwater ion in a Green House Land (비닐하우스 지역의 지하수 양수에 따른 지하수-하천수 상호 유동 변화 분석)

  • Kim, Nam Won;Lee, Jeong Woo;Chung, Il Moon;Kim, Chang Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.10
    • /
    • pp.1051-1067
    • /
    • 2012
  • Increased use of water curtain facilities to keep green house warm during winter cultivation has been known to cause excessive groundwater ion which might lead to decline of groundwater level, resulting in streamflow depletion. Therefore it is required to quantitatively assess the effects of groundwater ion on the streamflow depletion such as magnitude and extent. The objective of this study is to assess the change of stream-aquifer interaction according to groundwater ion near stream. To this end, a green house cultivation land in Sooha-ri, Sindun-myun, Icheon-si, Gyonggi-do was selected as a field experimental site, and monitoring wells were established near and within stream to observe the water level and temperature changes over a long period of time. From the observed water level and temperature data, it was found that the river reach of interest changed to a losing stream pattern during the winter cultivation season due to groundwater level decline around pumping wells near the stream. The continuous exchange rates between stream and aquifer were estimated by plugging the observed water level data series into the experimental relation between head difference and exchange rate, showing the streamflow depletion by 16% of the groundwater pumping rate in Feb, 2011.

Seasonal Change Analysis of Groundwater in Nakdong Riverside Greenhouse Complex Using Groundwater Monitoring (지하수관측을 이용한 낙동강변 시설농업단지 지하수의 계절적 변화 분석)

  • Baek, Mi Kyung;Shin, Hyun Chae;Kim, Sang Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.283-283
    • /
    • 2020
  • 국가의 논의 타작물 재배 권장 정책과 농한기 수익을 위해서 동절기에도 농사가 가능한 시설농업이 발달했으며, 1990년 초부터 재배면적이 증가하여 2000년에는 10만 ha를 넘어섰고, 2018년에는 80만ha의 규모를 보이고 있다(농사로, 2019). 시설농업단지의 동절기 난방을 위한 에너지원으로 화석연료와 전기열원을 사용하고 있고, 특히 강변의 경우 지하수를 난방 열원으로 사용가능해 수막재배를 이용한 대규모 시설단지가 발달함에 따라 지하수의 이용량이 증가하고, 2015년 농업용 지하수 이용량은 연간 20억 톤에 이른다(GIMS, 2019). 난방이 필요한 동절기에 수막용수를 위한 지하수 이용량이 급증하여 계절적인 수위변화를 보이며, 특히 강변의 대규모 시설농업단지의 지하수의 부족현상이 빈번히 발생하는 실정이다(송성호, 2017). 본 연구지역은 낙동강 하구댐 설치 전만조 시 해수의 유입으로 암반지하수의 심도가 증가할수록 EC가 증가하는 특성을 보이는 곳으로, 지하수의 이용량이 급증하는 동절기에 특히 급격히 증가하여 지하수의 안정적인 수질관리를 위해 염분변화의 관리가 필요한 지역이다. 지하수의 계절적인 변화를 위해 시설농업단지내에 지하수 관측정이 설치되어 관측되고 있으며 본 연구에서는 관측정의 2013년 1월~2019년 1월까지 지하수의 EC변화를 관측하였다. 지하수의 수위(GL.m), 온도, EC를 1시간 주기로 관측하여 계적적인 변화를 분석하였고, EC의 증가가 큰 곳은 심도별로 센서(다중심도)를 설치하여 염도의 변화를 관측하였다. 지하수성분의 지질학적 기원분석을 위한 양음이온 분석을 연 1회 실시하였다. 또한 관측정의 심도별 변화를 알기 위해 동일지역에 충적, 암반 관측정을 따로 설치하고 관측하여 지표수와 지하수의 심도별 영향의 차이를 분석하였다. 동일지역의 관측결과 평균 5m이하의 수위변화를 보이나, 5m 이상의 수위변동을 보이는 관측망은 15년 14개소 17년 19개소로 증가추세를 보이며, 이는 주로 밀집된 시설하우스 단지의 수막재배를 위한 겨울철 지하수 사용량 증가가 원인인 것으로 판단된다. 본 연구지역은 강변지역에 밀집된 시설하우스단지의 동절기 수막재배를 위한 지하수 과다 사용으로 수위급감 및 수량부족현상이 반복되고 있어, 예방과 대책강구를 위해 지표수의 함양과 지하수사용량의 상관관계 분석과 자료축적 및 추가연구를 위한 장기관측이 요구된다.

  • PDF

Establishment of Numerical Model for Groundwater Flow (Water Curtain) Analysis around Underground Caverns (지하공동 주변의 지하수 흐름(수막)해석을 위한 수치모형의 확립)

  • Jeong, Il-Mun;Jo, Won-Cheol;Bae, Deok-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.1
    • /
    • pp.63-73
    • /
    • 1997
  • Finite element model is established for the simulation of groundwater flow due to water curtain around underground oil storage Choleski decomposition method. The symmetric global conductance matrix is solved by vector storage Choleski decomposition method. The model is verified through comparison with the results of electric analogy. For the application of this model to real site, the finite element meshes are constructed according to representative vertical cross and longitudinal sections. In cross-sectional analysis, potential and flow distributions are compared based on the cavern pressure and horizontal water curtain. For longitudinal section, effects between nearly located caverns with or without vertical water curtain are analyzed. These results prove that the established model can be used as a tool for flow analysis around underground caverns.

  • PDF

Analysis of Thermal Environment in Greenhouse with Closed Water Curtain System (순환식 수막 온실의 열환경 분석)

  • 윤남규;김학주;이시영;염성현;남윤일
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2003.04a
    • /
    • pp.44-47
    • /
    • 2003
  • 시설재배에서 가장 시급한 과제를 꼽는다면 난방에너지 비용의 절감 대책을 들 수 있다. 시설원예농가의 경영비의 30% 이상을 차지하는 난방에너지 비용이야말로 시설원예농가의 경쟁력을 떨어뜨리고, 시설농업의 발전을 가로막는 주원인이라고 할 수 있다. 더욱이 최근의 이라크 전쟁과 화석연료자원의 고갈 예고 등 세계적인 경향 또한 우리나라 시설원예 산업의 발전에 부정적인 영향을 미치고 있는 실정이다. (중략)

  • PDF

Hydrogeological Characteristics of the Wangjeon-ri PCWC area, Nonsan-city, with an Emphasis on Water Level Variations (논산시 왕전리 수막재배지역의 지하수위 변화)

  • Cho, Byong-Wook;Yun, Uk;Lee, Byeong-Dae;Ko, Kyung-Seok
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.195-205
    • /
    • 2012
  • We evaluated the results of pumping tests, the amount of groundwater used by Protected Cultivation with Water Curtain (PCWC), and monthly depth to water table (DTW) at the Wangjeon-ri area, Nonsan City, to elucidate the cause of a decrease in pumping rate during the winter PCWC season. The transmissivity and storage coefficient at eight sites where the major aquifer is alluvium, vary from 119.9 to $388.1m^2/d$ and $1.5{\times}10^{-4}$ to $5.5{\times}10^{-4}$, respectively. The pumping rate for PCWC during three months (Dec. to Feb.) averaged about $8,100m^3/d$ and the maximum water level in the area varied by about 10 m. Groundwater levels had fully recovered by August-five months after pumping for PCWC had ceased. These observations indicate that the pumping rate during the winter PCWC season was excessive compared with groundwater productivity in the area. Groundwater level in the central PCWC area varied from -3.0 to 4.38 m, exceeding the water level of the Nosung Stream for only three months (Aug. to Oct.). This result indicates that Nosung Stream recharges the area during the period from November to July. To solve the problem of reduced pumping rate during the winter PCWC season, it would be necessary to reduce the amount of groundwater used for PCWC or to develop an artificial recharge system using recycled groundwater.

Uncertainty Analysis for Head and Gradient Incorporating Spatial Nonuniformity of Hydraulic Conductivity around Underground Storage Caverns (지하공동주변 수리전도도의 불균일성을 도입한 수두 및 동수경사의 불확실성 해석)

  • Jeong, Il-Mun;Jo, Won-Cheol;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.553-564
    • /
    • 1998
  • For the proper design and management of underground storage cavern, groundwater flow around cavern should be analyzed. Since this flow is influenced by spatial nonuniformity of hudraulic conductivity, the two-dimensional finite element flow model incorporating stochastic concepts was developed to analyze influences due to this nonuniformity. Monte Carlo technique was applied to obtain an approximate solution for two-dimensional, steady flow in a stochastically defined nonuniform medisu. For this purpose, the values of hydraulic conductivity were generated for each element with known mean and standard deviations. The uncertainty in model prediction depends on both the nonuniformity in hydraulic conductivity and the natures of the flow system such as water curtain and boundary condition. Therefore the uncertainties in predicted hydraulic head and gradient are the greatest where the mean hydraulic gradients are relatively large and far from the boundaries. Especially, we relate these uncertainties with well known gas tightness condition.

  • PDF

Neonatal Sepsis and Meningitis Caused by Neisseria meningitidis Serogroup B: a Case Report

  • Kim, Yoo Na;Choi, Yong-Sung;Cha, Sung Ho
    • Pediatric Infection and Vaccine
    • /
    • v.25 no.3
    • /
    • pp.165-169
    • /
    • 2018
  • Sepsis and meningitis caused by Neisseria meningitidis are rare in neonates, but neonatal sepsis and meningitis are associated with a high rate of mortality. Meningococcal disease is commonly reported in older children and adolescents and is known to be more prevalent in community settings. In this study, a 16-day-old neonate was diagnosed with serogroup B meningococcal sepsis and meningitis. The baby was treated with antibiotics at the early stages of the infection and was discharged in good condition without any complications. This case report can serve to raise awareness of the incidence and importance of meningococcal infection in neonates, especially serogroup B.

Analysis of Groundwater Variations using the Relationship Between Groundwater use and Daily Minimum Temperature in a Water Curtain Cultivation Site (수막재배지역에서 일최저기온과 지하수 이용량의 상관관계를 이용한 지하수위 변화 분석)

  • Chang, Sunwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.217-225
    • /
    • 2014
  • Water curtain cultivation (WCC) systems in Korea have depleted water resources in shallow aquifers through massive pumping of groundwater. The goal of this study is to simulate the groundwater variations observed from massive groundwater pumping at a site in Cheongweon. MODFLOW was used to simulate three-dimensional regional groundwater flow, and the SWAT (Soil and Water Assessment Tool) watershed hydrologic model was employed to introduce temporal changes in groundwater recharge into the MODFLOW model input. Additionally, the estimation method for groundwater discharge in WCC areas (Moon et al., 2012) was incorporated into a groundwater pumping schedule as a MODFLOW input. We compared simulated data and field measurements to determine the degree to which winter season groundwater drawdown is effectively modeled. A simulation time of 107 days was selected to match the observed groundwater drawdown from November, 2012 to March, 2013. We obtained good agreement between the simulated drawdown and observed groundwater levels. Thus, the estimation method using daily minimum temperatures, may be applicable to other cultivation areas and can serve as a guideline in simulating the regional flow of riverside groundwater aquifers.

Analysis of Groundwater Use and Discharge in Water Curtain Cultivation Areas: Case Study of the Cheongweon and Chungju Areas (청원-충주지역 수막재배용 지하수 사용량 및 배출량 분석)

  • Moon, Sang-Ho;Ha, Kyoochul;Kim, Yongcheol;Yoon, Pilsun
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.387-398
    • /
    • 2012
  • Korean agricultural areas that employ water curtain cultivation (WCC) have recently suffered extensive groundwater shortages due to an increase in the number of facilities. The primary focus of this study is to measure the daily groundwater use and discharge rates in the Cheongweon and Chungju pilot areas, while the second focus is to estimate the total amount of groundwater used in WCC areas nationwide in Korea. Taking into consideration several factors, including motor type, outflow abilities of wells, records of daily minimum temperatures below $0^{\circ}C$, and the number of running wells according to weather variations, we estimated that $53,138m^3/ha$ of groundwater had been used in the 4-hectare Cheongweon pilot area during the winter period of late 2011 through early 2012. On a prorated areal basis, we can calculate that the total groundwater used nationwide was 0.57 billion $m^3$ in WCC areas of $10,746m^2$. This value is equivalent to 33.7% of the total agricultural groundwater use (1.69 billion $m^3$) in Korea. During 9-22 February 2012, the daily water discharge rate in the 4-ha Cheongweon pilot area ranged from 2,079 to $2,628m^3$, averaging $2,341m^3$. Combining this value with meteorological records for 94 days with a daily minimum temperature below $0^{\circ}C$ results in an estimated groundwater volume of $54,990m^3/ha$ for the pilot area during the 2011-2012 winter period. The total amount of groundwater used nationwide in WCC areas would then be 0.59 billion $m^3$, equivalent to 34.9% of the total agricultural groundwater use in Korea. In the Chungju area, the groundwater discharge rate was estimated to be less than 805 $m^3$/ha. This value, combined with weather data for 108 days with a daily minimum temperature below $0^{\circ}C$ in this area, can be applied to infer that the total groundwater volume used in WCC areas nationwide is no more than 55% of the total agricultural groundwater use in Korea.