• Title/Summary/Keyword: 수리화학

Search Result 337, Processing Time 0.029 seconds

Analysis of the Level of Mathematical Concepts in Middle School Science Textbooks and Students' Cognitive Levels: Focused on Chemistry and Biology of the 2015 Revised Curriculum (중학교 과학 교과서에서 요구하는 수학 관련 과학 개념의 수준 및 학생들의 인지 수준 분석: 2015 개정 교육 과정의 화학과 생물을 중심으로)

  • Heesun Yang;Hyang-rae Cho;Seong-Joo Kang
    • Journal of Science Education
    • /
    • v.48 no.1
    • /
    • pp.15-30
    • /
    • 2024
  • This study aimed to analyze students' cognitive levels and the cognitive demands of mathematical concepts related to science to understand why students struggle to comprehend scientific concepts and tend to avoid learning them. Initially, the mathematics and science curricula of the 2015 revised curriculum were examined to extract learning elements related to mathematics within middle school science content. The Curriculum Analysis Taxonomy (CAT) was then employed to analyze the cognitive levels required by the learning content. In the domain of chemistry, among a total of 20 learning elements related to mathematics, 12 required an understanding at the level of initial formal manipulation (3A), while 3 necessitated comprehension at the level of later formal manipulation (3B). It was noted that cognitive logic types such as proportional reasoning, mathematical manipulation, and measurement skills were prominently employed in elements corresponding to both 3A and 3B. As for biology, out of 7 learning elements related to mathematics, 3 required an understanding at the level of initial formal manipulation (3A), and 2 necessitated comprehension at the level of later formal manipulation (3B). Elements corresponding to both 3A and 3B in biology predominantly involved correlational logic, indicating a somewhat different cognitive challenge compared to the domain of chemistry. Considering that the average percentage of middle school students capable of formal thinking, as analyzed through the GALT short form, was 12.1% for the first year, 16.6% for the second year, and 29.3% for the third year, it can be concluded that the cognitive demands of mathematics-related chemistry and biology learning content are relatively high compared to students' cognitive levels.

Seasonal Variation and Natural Attenuation of Trace Elements in the Stream Water Affected by Mine Drainage from the Abandoned Indae Mine Areas (인대광산 지역 광산배수에 영향을 받은 하천에서 미량원소의 계절적인 수질변화와 자연저감)

  • Kang, Min-Ju;Lee, Pyeong-Koo;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.277-293
    • /
    • 2007
  • Seasonal and spatial variations in the concentrations of trace elements, pH and Eh were found in a creek watershed affected by mine drainage and leachate from several waste rock dumps within the As-Pb-rich Indae mine site. Because of mining activity dating back to about 40 years ago and rupture of the waste rock dumps, this creek was heavily contaminated. Due to the influx of leachate and mine drainage, the water quality of upstream reach in this creek was characterized by largest seasonal and spatial variations in concentrations of Zn(up to $5.830 mg/{\ell}$), Cu(up to $1.333 mg/{\ell}$), Cd(up to $0.031 mg/{\ell}$) and $SO_4^{2-}$(up to $173 mg/{\ell}$), relatively acidic pH values (3.8-5.1) and highly oxidized condition. The most abundant metals in the leachate samples were in order of Zn($0.045-13.909 mg/{\ell}$), Fe($0.017-8.730mg/{\ell}$), Cu($0.010-4.154mg/{\ell}$) and Cd($n.d.-0.077mg/{\ell}$), with low pH(3.1-6.1), and high $SO_4^{2-}$(up to $310 mg/{\ell}$). The mine drainage also contained high concentrations of Zn, Cu, Cd and $SO_4^{2-}$ and remained constantly near-neutral pH values(6.5-7.0) in all the year. While the leachate and mine drainage might not affect short-term fluctuations in flow, it may significantly influence the concentrations of chemicals in the stream. The abundance and chemistry of Fe-(oxy)hydroxide within this creek indicated that the Fe-(oxy)hydroxide formation could be responsible for some removal of trace elements from the creek waters. Spatial and seasonal variations along down-stream reach of this creek were caused largely by the influx of water from uncontaminated tributaries. In addition, the trace metal concentrations in this creek have been decreased nearly down to the background level at a short distance from the discharge points without any artificial treatments after hydrologic mixing in a tributary. The nonconservative(i.e. precipitation, adsorption, oxidation, dissolution etc.) and conservative(hydrologic mixing) reactions constituted an efficient mechanism of natural attenuation which reduces considerably the transference of trace elements to rivers.

A Study on the Geochemical Clogging for the Assessment of the Hydrological Safety of the Underground Oil Storage Carvern (지하유류비축기지 수리안정성 평가를 위한 광물학적 클로깅 가능성 연구)

  • Kim, Geon-Young;Bae, Dae-Seok;Choi, Byeong-Young;Oh, Se-Joong;Koh, Yong-Hwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.139-159
    • /
    • 2008
  • Geochemical analysis of the various kinds of water including observation borehole groundwater was carried out for the assessment of the hydrological safety of the underground oil storage cavern and the potentiality of mineralogical and microbiological clogging was estimated. Most of water samples belonged to $Ca-HCO_3$ and $Ca-HCO_3-SO_4$ types. There was no distinct chemical difference in the various kinds of water. All kinds of water are undersaturated with the calcite which is the major clogging mineral. Most water samples have low Fe and Mn concentrations. However, they are saturated or oversaturated with the iron-oxide/hydroxide minerals and have high dissolved oxygen contents which suggests the possibility of clogging by the iron-oxide/hydroxide minerals as a long-term aspect. Several water samples from the ground observation borehole also show the high saturation indices far the clay minerals, which can fill up the fractures, indicating the possibility of clogging by the clay minerals. Statistical analysis shows the degree of mineral precipitation or dissolution is mainly controlled by pH, Eh and DO of water samples. According to the microbial analysis, the aerobic microbes and slime forming bacteria are dominant in most water samples and anaerobic microbes including sulfate reducing bacteria are very low or not detected. Although the slime forming bacteria which are known as a main microbial cause of the clogging is lower than $10^5\;CFUs/mL$ in all water samples, because the slime forming bacteria are dominant microbe in several observation boreholes, the clogging can be caused by it as a long-term aspect. In addition, the possibility of clogging can be increased if the microbial effect is combined with the mineralogical effect such as iron oxide/hydroxide minerals for the possibility of clogging. Therefore, the systematic and long-term program for the assessment of clogging is required for the safe operation of underground oil storage cavern.

Assessment of Hydrochemistry and Irrigation Water Quality of Wicheon Watershed in the Gyeongsangbuk-do (경상북도 위천수계의 수리화학적 특성 및 관개용수 수질평가)

  • Lee, Gi-Chang;Park, Moung-Sub;Kim, Jae-Sik;Jang, Tae-Kwon;Kim, Hyo-Sun;Lee, Hwa-Sung;Son, Jin-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.36-43
    • /
    • 2020
  • BACKGROUND: Wicheon watershed has the largest irrigation area among the mid-watershed of Nakdong river. However, no investigation of irrigation water quality has been conducted on the Wicheon watershed, which evaluates the effects on the soil quality and crop cultivation. Therefore, this study aims to provide various assessments of water quality of Wicheon watershed as the scientific basic data for efficient agricultural activities. METHODS AND RESULTS: Water sampling was performed in five locations of the first tributaries of Wicheon. Wicheon watershed showed clean water quality with very low organic matters and safe water quality from metals at all points of investigation. It was estimated that the natural chemical components of Wicheon watershed were originated from water-rock interaction in Gibbs diagram. All samples were concentrated in the type of Ca-HCO3-Cl in the Piper diagram. The quality of irrigation water was evaluated with sodium adsorption ratio (SAR), residual sodium carbonate (RSC), permeability index (PI), and percent sodium (%Na). The values of these water quality indices were in the range of 0.37-0.67, -2.11--0.24, 41.13-84.52% and 11.28-21.84%, respectively, and were classified as good grades at all sites. CONCLUSION: The water quality of Wicheon watershed was very low in salt, indicating good irrigation water suitable for growing agricultural products. We hope that the results of this study will be used as the basic data for the cultivation of agricultural products and promotion of their excellence.

Nitrite Accumulation Characteristics According to Hydraulic Retention Time and Aeration Rate in a Biological Aerated Filter (생물여과 반응기에서 수리학적 체류시간 및 폭기량에 따른 아질산 축적 특성)

  • Yoon, Jong Moon;Kim, Dong Jin;Yoo, Ik-Keun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.200-206
    • /
    • 2006
  • In a biological aerated filter (BAF) packed with ceramic media (void fraction of BAF=0.32), nitrite accumulation was studied with the variation of hydraulic retention time (HRT) and superficial air velocity. Synthetic ammonium wastewater and petrochemical wastewater were fed at a constant load of $1.6kgNH_4^+-N/m^3{\cdot}d$. Ammonium removal rate was mainly affected by the superficial air velocity in BAF, but nitrite ratio($NO_2-N/NO_x-N$) in the effluent was dependent on both HRT and superficial air velocity. For a fixed HRT of 0.23 hr (corresponding to the empty bed contact time of 0.7 hr) ammonium removal rate was 73/90/92% and nitrite ratio was 0.92/0.82/0.48 at the superficial air velocity of 0.23/0.45/0.56 cm/s, respectively. When HRT is increased to 0.9 hr with superficial air velocity ranging from 0.34 to 0.45 cm/s, the ammonium removal rate was 89% on average. However nitrite ratio decreased significantly down to 0.13. When HRT was further increased to 1.4 hr, ammonium removal rate decreased, thereby resulting in the free ammonia ($NH_3-N$, FA) build-up and nitrite ratio gradually increased (>0.95). Although aeration rate and FA concentration at HRT of 0.23 hr were unfavorable for nitrite accumulation compared with those at HRT of 0.9 hr, nitrite ratio at HRT of 0.23 hr was higher. Taken together, HRT and nitrogen load were found to be critical, in addition to FA concentration and aeration condition, for nitrite accumulation in the BAF tested in the present study.

Hydrochemical characteristics in groundwater affected by reclamation (해안가 매립으로 인한 지하수의 수리화학적 특성)

  • 서정율
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.1-20
    • /
    • 2004
  • This study focuses on the hydrochemical characteristics in goundwater affected by reclamation at 2000 Sydney Olympic Games site, Sydney, Australia. The Olympic Games site can be divided into three areas, i.e. reclaimed areas; landfill areas and non-infilled areas. In the current work, 'reclaimed areas' were previously estuarine, and were filled with waste materials and are now above present high tide level, whereas 'landfill areas' are areas where deposition of waste materials occurred above sea level. No deposition of waste took place in 'non-infilled areas'. This study was also evaluated by three different types such as deep boreholes, shallow boreholes and standpipes. The hydrochemishy of groundwaters in reclaimed and non-in-filled areas is characterized by Mg- and Ca-enrichment, whereas groundwaters in landfill areas are elevated in K and NO₃. Na, K and Mg are the dominant cations in groundwater from reclaimed areas and Na and K are the dominant cations in groundwater in landfill areas. Na and Mg are the dominant cations in groundwater in deep boreholes, whereas Na and K are the dominant cations in groundwater in shallow boreholes and standpipes. There is no distinct trend in heavy metals with electrical conductivity in the groundwater between the re-claimed, landfill and non-infilled areas. Fe and Mn in landfill areas with respect to reclaimed areas and non-infilled areas show a distinct increase in concentration with declining pH. Mean electrical conductivity values in the deep and shallow boreholes are higher than that of standpipes, but the minimum and maximum value of electrical conductivity in groundwater in standpipes shows remarkably different value, probably due to perched pond. There is no correlation between Cu, Pb, Zn, Cr concentrations in groundwater with pH, from deep boreholes, shallow boreholes and standpipes, except for Fe and Mn, which demonstrate increasing concentrations with declining pH. The results revealed a close association between elevated concentrations in groundwater and the presence of fill materials at the site. Trace metals teachability from re-claimed soils adjacent to estuary plays a significant role in determining their potential environmental risk to surrounding environment.

The Origin and Geochemical Behavior of Fluoride in Bedrock Groundwater: A Case Study in Samseung Area (Boeun, Chungbuk) (화강암 지역 암반 지하수 내 불소 이온의 기원 및 거동: 충북 보은 삼승면 일대의 현장 조사와 실내 실험 연구)

  • Chae, Gi-Tak;Koh, Dong-Chan;Choi, Byoung-Young
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.555-566
    • /
    • 2008
  • Hydrogeochemical study in Samseung area (Boeun, Chungbuk) and waterrock interaction experiment using rock samples from the area were performed to elucidate the fluoride source in groundwater and explaining geochemical behavior of fluoride ion. Fluoride concentration of public water supply mostly using groundwater in Boeun area was significantly higher in South Korea. The maximum fluoride concentration of the study area was 3.9 mg/L, and 23% of samples exceeded the Korean Drinking Water Standard of fluoride (1.5 mg/L). The average concentration of fluoride was 1.0 mg/L and median was 0.5 mg/L. Because of high skewness (1.3), median value is more appropriate to represent fluoride level of this area. The relationships between fluoride ion and geochemical parameters ($Na^+$, $HCO_3$, pH, etc.) indicated that the degree of waterrock interaction was not significant. However, high fluoride samples were observed in $NaHCO_3$ type on Piper's diagram. The negative relationship between fluoride and $NO_3$ ion which might originate from surface contaminants was obvious. These results indicate that fluoride ion in groundwater is geogenic origin. The source of fluoride was proved by waterrock interaction batch test. Fluoride concentration increased up to 1.2 mg/L after 96 hours of reaction between water and biotite granite. However, the relationship between well depth and fluoride ion, and groundwater age and fluoride ion was not clear. This indicates that fluoride ion is not correlated with degree of waterrock interaction in this area but local heterogeneity of fluoriderich minerals in granite terrain. High fluoride concentration in Boeun area seems to be correlated with distribution of permeable structures in hard rocks such as lineaments and faults of this area. This entails that the deep bedrock groundwater discharges through the permeable structures and mixed with shallow groundwater.

Analyzing the Change of Surface Water and Groundwater Systems Caused by Tunnel Construction in Northern Ulsan City (울산시 북구 지역 터널 굴착에 의한 지표수계 및 지하수계 변화 분석)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Lee, Chung-Mo;Lim, Woo-Ri;Yun, Sul-Min;Park, Heung-Jai
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.81-99
    • /
    • 2018
  • Excessive groundwater discharge by tunneling and tunnel operation can lead to groundwater exhaustion and ground subsidence. Therefore, it is very important to evaluate environmental impact and to establish mitigation measures of the impact related to tunnel excavation based on hydrogeological and modeling approaches. This study examined the depletion of surface reservoirs and valley water due to tunnel excavation through field survey, water quality analysis, tracer test, and groundwater modeling. As a result of field water quality test, the concentration of chemical constituents in groundwater discharge into the tunnel is slightly higher than that of valley water. By the result of laboratory water analysis, both valley water and the groundwater belong to $Ca^{2+}+HCO_3{^-}$ type. Tracer test that was conducted between the valley at the injection point and the tunnel, indicates valley water infiltration into the ground and flowing out to the tunnel, with maximum electrical conductance changes of $70{\mu}S/cm$ in the first test and of $40{\mu}S/cm$ in the second test. By groundwater modeling, the groundwater discharge rate into the tunnel during tunnel construction is estimated as $4,942m^3/day$ and groundwater level recovers in 3 years from the tunnel completion. As a result of particle tracking modeling, the nearest particle reaches the tunnel after 6 hours and the farthest particle reaches the tunnel after 9 hours, similarly to the case of the field trace test.

Hydro-geochemical Nature and Nitrates Contamination Charecters of Groundwater in the Youngdong, Chungbuk Province (충북 영동지역 지하수의 수리지화학적 특성 및 질산염 오염 특성)

  • Lee, In-Gyerong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.45 no.1
    • /
    • pp.23-30
    • /
    • 2012
  • Major ions and nitrogen isotopic analyses were performed to determine the geochemical characters and to identify the source of nitrate of the shallow groundwater around agricultural field in the Youngdong area. The pH value of groundwater ranges from 60. to 8.2 (pH 7.2, mean). The average of EC, Eh and DO is 369 ${\mu}S/cm$ (70~729 ${\mu}S/cm$), 165.6 mV (29~383.2 mV), 4.3 mg/L (1.8~8.0 mg/L) respectively. The ion concentraion of groundwater was in the order of $Ca^{2+}$>$Na^{2+}$>$Mg^{2+}$>$K^{2+}$ and ${HCO_3}^-$>${NO_3}^-$>${SO_4}^{2-}$>$Cl^-$>$F^-$. Most of groundwater is Ca-$HCO_3$ type. The groundwater was affected by water-rock interaction in the shallow depth. Some groundwater is Ca-Cl or Na-$HCO_3$ (2.5%) type that was due to agricultural activities. The $NO_3$_N concetration of grondwater range from 10.2 mg/l to 26.9 mg/l, which show that this area is under nitrate pollution. ${\delta}^{15}N-NO_3$ value of the groundwater is the origins of are a combination of animal wastes and man-made fertilizers.

Evaluation on Feasibility of Industrial By-products for Development of Mono-Layer Landfill Cover System (산업부산물을 이용한 단층형 매립지 복토시스템 개발을 위한 적용 타당성 평가)

  • Kim, Soon-Oh;Kim, Pil-Joo;Yu, Chan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1075-1086
    • /
    • 2008
  • In order to investigate the applicability and suitability of the industrial by-products to apply mono-layer cover system for non-sanitary landfill sites, 6 different industrial by-products, such as construction waste, bottom ash, gypsum, blast furnace and steel manufacture slags, and stone powder sludge, were evaluated. Various physicochemical and hydrodynamic properties of the industrial byproducts were investigated. The environmental safety was monitored using batch and long-term leaching tests as well. In addition, the flexibility of plants was observed by cultivating them in the industrial by-products. The results for physicochemical properties indicate that most of the materials considered appeared to be suitable for landfill cover. Particularly, the concentration levels of hazardous elements regulated by the Korean Law for Waste Management did not exceed the regulatory limits in all target materials. In addition, the concentrations of regulated elements for the Korean Soil Conservation Law were examined below the regulatory limits in most of materials considered, except for the stone powder sludge. The results of batch and long-term experiments showed bottom ash and construction waste were the most suitable materials for landfill cover among the industrial by-products considered. The results of plant studies indicate that the bottom ash among industrial by-products considered was most effective in developing vegetation on landfill site, showing fast germination and large growth index. At the final covering system made of mixture of soil and bottom ash, the optimum application rate of farmyard manure was observed to be 40-50 Mg/ha.