• Title/Summary/Keyword: 수리인자

Search Result 442, Processing Time 0.031 seconds

Influence of Operating Parameters on Nitrite Accumulation in a Biofilm Reactor and Supplement of External Carbon Source for Denitrification by Sewage Sludge Solubilization (생물막 반응조에서 아질산염 축적에 미치는 운전인자 영향과 하수슬러지 가용화에 의한 탈질반응의 외부탄소원 공급에 관한 연구)

  • Ahn, Hye Min;Lee, Dae Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.57-63
    • /
    • 2013
  • A combined process consisted of a biofilm reactor and a continuously stirred-tank reactor (CSTR) was investigated for highly loaded ammonium wastewater treatment via nitrite accumulation. To enhance ammonium oxidizing bacteria over nitrite oxidizing bacteria on the surface of carriers, the biofilm reactor was operated at temperature of $35^{\circ}C$ for more than three months but the influent ammonium (500 mg-N/L) was partially oxidized to nitrite (240 mg-N/L). As pH was increased from 7.5 to 8.0, nitrite accumulation was fully achieved due to the inhibition of nitrite oxidizing bacteria under high free ammonia concentration. The biofilm reactor performance was severely deteriorated at the hydraulic retention time of 12 hr, at which incomplete nitrification of ammonia was observed. Various solubilization methods were applied to sewage sludge for enhancing its biodegradability and the combined method, alkaline followed by ultrasonic, gave the highest solubilization efficiency (58%); the solubilized solution was used as the external carbon source for denitrification reaction in CSTR. FISH analysis showed that the dominant microorganisms on the carriers were ammonium oxidizing bacteria such as Nitrosomonas spp. and Nitrospirar spp. but low amounts of nitrite oxidizing bacteria as Nitrobacter spp. was also detected.

Continuous Near-field Mixing with Variable Oceanic Conditions (해양수리특성의 변화를 고려한 연속적 근역혼합거동)

  • Kang See Whan;Kim Young Do;Lee Ho Jin;Kim Sang Ik;Han Sung Dae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.4
    • /
    • pp.12-20
    • /
    • 2001
  • The temporal variability in near-field mixing characteristics of discharging plumes in oceanic environment was investigated using the time series data of the buoyant jet parameters. Based on the currents and density profiles observed in Masan outfall site and effluent discharge flowrates for 63days of summer season, the temporal variabilities and those occurrence frequency were obtained by line plume equations. The results show that wide range of variability in Masan outfall's mixing characteristics was found due to the temporal changes of effluent flowrates and ambient oceanic conditions. The near-field dilution was in the range of 30~71 with the averaged dilution of 34, which was a good agreement with field measurements of salinity deficit. The length of mixing zone was in the range of 5.4~36.2 m with the average of 9.5 m, and the plume rise height was in the range of 8.1~10.2 m with the average of 8.9 m. However, only the 30~44% of the whole results are higher than the averages, which indicates the necessity of this frequency analysis with the continuously measured data for designing and managing the ocean outfall system.

  • PDF

Nitrogen Removal in Column Wetlands Packed with Synthetic Fiber Treating Piggery Stormwater (축산단지 강우 유출수 처리를 위한 합성섬유충진 습지의 질소제거에 관한 연구)

  • Cheng, Jing;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.68-75
    • /
    • 2016
  • A set of lab-scale polymer synthetic fiber packed column wetlands composing three columns (CW1, CW2 and CW3) with different hydraulic regimes, recirculation frequencies and pollutant loading rates, were operated in 2012. Synthetic fiber tested as an alternative wetland medium for soil mixture or gravel which has been widely used, has very high pore size and volume, so that clogging opportunity can be greatly avoided. The inflow to the wetland was artificial stormwater. All the wetlands achieved effective removal of TSS (94%~96%), TCOD (68%~73%), TN (35%~58%), TKN (62%~73%) and NH4-N (85%~ 99%). Particularly, it was observed that COD was released from the fiber during one distinct period in all wetlands. This was probably due to the degradation of polymer fiber, and the released organic matters were found to serve as carbon source for denitrification. In addition, with longer retention time and frequent recirculation, lower effluent concentration was observed. With higher pollutant loading rate, higher nitrification and denitrification rates were achieved. However, although organic matters were released from the fiber, the lack of carbon source was still the limiting factor for the system since the release persisted only for 40 days.

Prediction of Loss of Life in Downstream due to Dam Break Flood (댐 붕괴 홍수로 인한 하류부 인명피해 예측)

  • Lee, Jae Young;Lee, Jong Seok;Kim, Ki Young
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.879-889
    • /
    • 2014
  • In this study, to estimate loss of life considered flood characteristics using the relationship derived from analysis of historical dam break cases and the factors determining loss of life, the loss of life module applying in LIFESim and loss of life estimation by means of a mortality function were suggested and applicability for domestic dam watershed was examined. The flood characteristics, such as water depth, flow velocity and arrival time were simulated by FLDWAV model and flood risk area were predicted by using inundation depth. Based on this, the effects of warning, evacuation and shelter were considered to estimate the number of people exposed to the flood. In order to estimate fatality rates based on the exposed population, flood hazard zone is assigned to three different zones. Then, total fatality numbers were predicted after determining lethality or mortality function for each zone. In the future, the prediction of loss of life due to dam break floods will quantitatively evaluate flood risk and employ to establish flood mitigation measures at downstream applying probabilistic flood scenarios.

Analyses of Riverbed Changes and Physical Disturbance Evaluations by Weir Installation in a Reach (보의 설치에 따른 하상변동과 물리적 교란평가 분석)

  • Choi, Heung Sik;Lee, Woong Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1203-1213
    • /
    • 2014
  • The hydraulic characteristics and the patterns of riverbed change had been analysed by HEC-RAS simulation in a reach of Cheong-mi river with and without weir. The corresponding physical disturbance had been evaluated with the method suggested by K-water (2008). The occurrences of low physical disturbance score coincide with the corresponding high bed changes by weir installation. The effects of physical disturbance coincide with the patterns of riverbed change along river reach which shows riverbed change is the important factor to physical disturbance. In case of installation of additional weirs at up and down stream sections of no disturbance effect by the existing weir, no physical disturbances occur in certain sections with confirming the appearance of the similar disturbance scores between the simulation results of with and without additional weir installations. In case of installation of additional weirs at up and down stream sections of disturbance effect margins by the existing weir, physical disturbances occur at every section. In case of installation of additional weirs at up and down stream sections within disturbance effect by the existing weir, low physical disturbance scores are given at every section because of superposition of disturbance along river reach. The physical disturbance would be minimized such that the additional weir is installed with sufficient distances of no disturbance and bed change effects along river reach.

Effect of major pollution sources on algal blooms in the Seungchon weir and Juksan weir in the Yeongsan River using EFDC (EFDC를 이용한 영산강 주요 오염 부하 저감에 따른 승촌보 및 죽산보 녹조 현상 개선 효과 분석)

  • Kim, Jinsoo;Kim, Jaeyoung;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.5
    • /
    • pp.369-381
    • /
    • 2020
  • In this paper, observed water quality, algal blooms and flow rates in the Yeongsan River and its boundaries including 8 tributaries and 2 wastewater treatment plants for two years of 2018-2019 were analyzed. It seems effects of non-point source load inputs from basin areas to the river may be significant though the field data availability was limited. The EFDC model was calibrated against data collected from 6 water level monitoring stations and 6 water quality monitoring stations, respectively, in the study area. Water quality improvement scenarios were developed assuming 50% and 75% reductions of major pollution sources including treatment plants and tributaries. The developed scenarios were applied to the EFDC model to estimate effects on algal bloom occurrences in the Seungchon weir and Juksan weir. Improvement of the effluent of Gwangju 1 WWTP by 75% did not show any effect on algal blooms for two weir locations. The major tributary affecting algal blooms in the Seungchon weir was the Hwangryong River. The Jisuk stream was found as the most important tributary for the Juksan weir followed by the effect of the Hwangryong River. Though it seems other scattered small nonpoint source load input to the Yeongsan river also seem to be important, it was not possible to reflect their effects appropriately due to field data availability.

Routing of Groundwater Component in Open Channel (Saint-Venant 공식(公式)에 의한 개수로(開水路)의 지하수성분(地下水性分) 추적(追跡))

  • Kim, Jae Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.4
    • /
    • pp.23-32
    • /
    • 1988
  • The rates of infiltration contributed to the flow fo water in an unconfined aquifer under the partially penetrated stream at an ungaged station and the corresponding base flow in channel are coupled by using the hydraulic and/or hydrologic characteristics obtained from the geomorphologic and soil maps. For the determination of groundwater flow, the linearized model which is originally Boussinesq's nonlinear equation is applied in this study. Also, a stream flow routing model for base flow in channel is based on a simplification of the Saint-venant. The distributed runoff model with piecewise spatial uniformity is presented for obtaining its solution based on a finite difference technique of the kinematic wave equations. The method developed in this study was tested to the Bocheong watershed(area : $475.5km^2$) of the natural stream basin which is one of tributaries in Geum River basin in Korea. As a result, it is suggested that the rationality of hydro-graph separation according to a wide variability in hydrogeologic properties be worked out as developing the physically based subsurface model. The results of the present model are shown to be possible to simulate a base flow due to an arbitrary rate of infiltration for ungaged basins.

  • PDF

Influence of Food Wastewater Loading Rate on the Reactor Performance and Stability in the Thermophilic Aerobic Process (음폐수 부하량에 따른 고온호기성 공정의 처리 양상)

  • Jang, Hyun Min;Choi, Suk Soon;Ha, Jeong Hyub;Park, Jong Moon
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.279-284
    • /
    • 2013
  • In this study, the feasibility of a single-stage thermophilic aerobic process for the treatment of high-strength food wastewater produced from the recycling process of food wastes was examined to substitute anaerobic digestion process. Also, the removal and stability of thermophilic aerobic process were assessed according to the changes of hydraulic retention times (HRTs) and organic loading rates (OLRs). When the OLR increased from 9.2 to $37.2kgCOD/m^3d$, a pH value in R1 (HRT : 5 d) significantly decreased to 5.0, due to the organic acid accumulation. On the other hand, the pH value in R2 (HRT : 10 d) was stable and R2 showed the high removal of COD, organic acid and lipid, even though the OLR increased from 4.6 to $18.6kgCOD/m^3d$. In R1, the COD loading rates for COD removal was suddenly dropped, as the COD loading rate increased from 18.6 to $28.4kgCOD/m^3d$. In contrast, R2 showed that the COD loading rates for COD removal increased with regard to increment in the loading rates of 3.61, 7.05, 9.43 and $12.2kgCOD/m^3d$, indicative of the high COD removal efficiency. Therefore, the results demonstrated that over 10-d HRT, the high concentration of raw food wastewater was efficiently treated in the single-stage thermophilic aerobic process.

Comparison of Algal Growth Kinetics using Reclaimed Wastewaters from Various Treatment Processes (다양한 수질정화 공정 별 하수처리수 재이용수의 조류성장 비교)

  • Joo, Jin-Chul;Seo, Sou-Hyun;Song, Ho-Myeon;Kim, Il-Ho;Ahn, Chang-Hyuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.309-309
    • /
    • 2011
  • 지구온난화와 도시기후 변화에 대응하기 위해 자연의 생태적 기능을 복원하고 환경에 대한 오염부하를 저감하여 도시 환경의 건강성과 지속성을 높이기 위해 도심 내 물순환시스템(urban water circulating system)의 구축이 요구된다. 즉, 물순환시스템을 활용하여 도심 내 다양한 수원(생태하천/호수 유지용수, 하수처리수, 우수, 지하수 등)을 네트워크 및 통합 관리하여 도시 내 물순환의 건전성과 수자원의 재이용률을 향상시킬 수 있다. 이를 위해서 연중 발생량이 일정하고 막대한(66.4억톤/년, 2009년 기준) 하수처리수 방류수는 고도처리를 통해 수질이 양호하며 안정적인 대체 수자원으로 고려된다. 또한, 하수처리수의 재이용은 공공수역으로 배출되는 오염부하량의 총량 삭감 및 상수사용량의 절감과 수자원을 효율적으로 이용한다는 면에서 최근 재이용 사례가 증가하고 있는 추세이다. 그러나, 도심 내 친수공간(생태하천/호수)은 저류수량에 비해 유입수량이 적어 체류시간이 비교적 장시간이고, 이로 인해 부영양화가 쉽게 발생해 수질이 악화된다. 따라서, 본 연구에서는 하수처리수 재이용수를 도심 내 친수공간의 유지용수로 활용 시, 수질정화공정(응집 후 여과, 응집 후 여과+한외여과, 응집 후 여과+한외여과+역삼투 공정)이 친수공간 내 조류성장에 미치는 영향을 파악하기 위해, 하수처리수 재이용수 pilot plant의 수질정화공정별 유출수를 활용해 M. aeruginosa를 시험조류로 조류성장(growth kinetics)을 조사하였다. 조류는 $5\times104$ cells/mL의 초기 농도로 접종하여 배양하였으며, 조류성장에 직접적인 제한인자인 용존반응성인의 농도에 따른 성장속도를 Monod와 변형 Monod Kinetics를 이용해 반포화상수(Ks)와 최대 성장속도(${\mu}$max)를 산정하였다. 실험결과, 역삼투 공정을 제외한 다른 수질정화공정은 비록 영양염류가 80~90% 이상 제거되어 수계의 화학적 성상이 변하였으나 조류성장역학의 변화는 통계학적 (p=0.05)으로 유의할만한 수준은 아닌 것으로 판명되었다. 또한, 수리학적 체류시간이 2주 이상이 될 경우, 역삼투 공정을 제외한 수질정화공정 별 유출수에서는 조류의 과다성장으로 인해 부영양화가 발생하는 것으로 판명되었다. 결론적으로 하수처리수 재이용수를 친수용수로 활용시, 조류성장을 방지하기 위하여 용존반응성인의 농도를 중점적으로 관리하는 수질정화공정 및 유지용수 공급방안을 고려해야하는 것으로 판단된다.

  • PDF

Influence of Water Supply Withdrawal on the River Flow and Water Quality (하천취수가 하천흐름 및 수질에 미치는 영향)

  • Seo, Il Won;Song, Chang Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.343-352
    • /
    • 2011
  • The water quantity by intake station as well as the tributary flow discharge acting as sink or source were added to the main flow rate in the present study and RMA-2 and RMA-4 models were applied to the reach from Pal-dang dam to Jam-sil submerged weir to investigate the influence of water supply withdrawal on the river flow and water quality. The numerical results revealed that the water supply withdrawal from 5 intake stations located upstream of Jam-sil submerged weir changed the total flow rate and therby induced different hydraulic characteristics in terms of water surface elevation and velocity. The changed flow field by the inclusion of water intake quantity led to the variation of water quality. By the consideration of the water supply withdrawal, the velocity structure was significantly disturbed by the outflowing flow condition nearby Gu-ui, Ja-yang, and Pung-nap intake stations. Furthermore, the mean velocity was lowered by 25% and the stage upstream of Gu-ui station rose upto 1.5 cm compared with the result by exclusion of water intake. In case of no water withdrawal, the distribution of BOD concentration was parallel throughout the domain. However, when the water withdrawal is considered, the distribution of BOD concentration nearby the Gu-ui, Am-sa, and Ja-yang station was signifiantly changed. In addition, the BOD concentration including the intake stations showed higher value at the downstream of the reach due to the loss of the discharge by water withdrawal effect. It is concluded that both the inflow and outflow discharges from tributaries and water intake stations should be included in the numerical simulation to analyze the hydrodynamic behaviors and mixing characteristics more accurately.