딥 러닝(Deep learning)은 기존 인공 신경망 내 계층 수를 증가시킴과 동시에 효과적인 학습 방법론을 제시함으로써 객체/음성 인식 및 자연어 처리 등 고수준 문제 해결에 있어 괄목할만한 성과를 보이고 있다. 그러나 학습에 필요한 시간과 리소스가 크다는 한계를 지니고 있어, 이를 줄이기 위한 연구가 활발히 진행되고 있다. 본 연구에서는 아파치 스파크 기반 클러스터 컴퓨팅 프레임워크 상에서 딥 러닝을 분산화하는 두 가지 툴(DeepSpark, SparkNet)의 성능을 학습 정확도와 속도 측면에서 측정하고 분석하였다. CIFAR-10/CIFAR-100 데이터를 사용한 실험에서 SparkNet은 학습 과정의 정확도 변동 폭이 적은 반면 DeepSpark는 학습 초기 정확도는 변동 폭이 크지만 점차 변동 폭이 줄어들면서 SparkNet 대비 약 15% 높은 정확도를 보였고, 조건에 따라 단일 머신보다도 높은 정확도로 보다 빠르게 수렴하는 양상을 확인할 수 있었다.
이 논문에서는 간섭계 구성의 기본이 되는 위성 간 상대위치 추정에 관한 알고리즘을 개발하고 검증하였다. 편대위성 간 상대위치 추정을 실시간으로 수행하기 위해 확장칼만필터 (EKF, Extended Kalman Filter)와 Unscented 칼만필터 (UKF, Unscented Kalman Filter) 를 사용하였다. 칼만 필터를 이용한 상태벡터 (state-vector)의 갱신(update)을 위한 관측 데이터는 시뮬레이션을 통해 얻어진 GPS 위성 신호의 단일차분 (Single Difference)에 대한 값을 사용하였다. 이 연구에서 개발한 알고리즘으로 추정된 편대위성 간 상대위치는 확장칼만필터와 Unscented 칼만필터 모두 참 값으로 가정한 STK(Satellite Tool Kit) 의 시뮬레이션된 관측 값에 대해 ${\pm}1m$ 이내의 오차로 수렴함을 확인하였다. 또한 두 종류의 칼만필터를 이용하여 상대위치 결정을 수행함으로써 비선 형성을 가지는 경우 Unscented 칼만필터의 성능이 상대적으로 우수함을 확인할 수 있었다.
최근 입력 큐 방식의 ATM 스위치에 관한 연구는 가장 활발한 연구분야 중의 하나이다. 입력 큐 방식의 스케줄러에 관한 연구에서도 많은 발전이 이루어져 왔으며, 상업적으로 응용되고 있다. 스케줄링 알고리즘은 쓰루풋을 향상시키고, QoS를 만족하면서, 공평하게 서비스를 제공하는 특성을 가져야 한다. 본 논문에서는 입력 큐 방식의 ATM 스위치 패브릭을 효과적이고, 빠르게 중재할 수 있는 스케줄링 알고리즘의 구현에 관해 연구하였다. 제안한 스케줄러는 랜덤 트래픽에서 $100\%$에 수렴하는 스케줄링 성능을 제공하고 있다. 제안한 알고리즘은 4회의 반복 매칭을 통해서 N 포트 VOQ 스위치의 중재를 완료할 수 있다. 또한 제안한 알고리즘은 가장 널리 사용되는 iSLIP 알고리즘과 비교하였을 경우 1/2의 면적만을 사용하고 구현이 용이한 장점을 가지고 있다. 4회의 반복 매칭을 수행할 경우에는 iSLIP 알고리즘보다 더 우수한 성능을 보여주었다.
본 논문에서는 슈퍼픽셀과 FCM을 이용한 클러스터 초기값 설정방법과 이를 사용한 칼라영상분할을 연구한다. 클러스터링을 이용한 대표적인 칼라영상분할 방법으로 Fuzzy C-menas (FCM) 알고리즘을 많이 사용한다. FCM은 하나의 데이터가 각 클러스터에 서로 다른 소속도를 갖도록 한다. 그러나 FCM은 초기값 설정에 따라 국부적인 수렴문제가 발생한다. 따라서 초기값 설정문제는 매우 중요한데 본 연구에서는 슈퍼픽셀을 이용하여 클러스터의 초기값을 구하는 방법을 제안한다. 슈퍼픽셀은 원 영상에서 특성이 비슷한 화소들의 묶음으로 표현되는데 먼저 원 영상으로부터 슈퍼픽셀을 구하고 이를 $La^*b^*$ 칼라특징공간에 투영하여 클러스터 초기값을 구한다. 제안방법에서 슈퍼픽셀의 수는 원영상의 화소 수보다 일반적으로 매우 적어서 클러스터 초기값 설정을 위한 고속처리가 가능하다. 제안된 알고리즘의 성능평가를 위해 다양한 칼라영상을 사용하여 컴퓨터 모의실험을 수행하였으며 실험결과 제안방법이 기존방법에 비해 영상분할 성능이 우수함을 알 수 있었다.
움직이는 물체를 추적함에 있어 언센티드 칼만 필터(UKF) 알고리즘은 미분 계산없는 빠른 수렴속도와 뛰어난 추정 성능을 지녔다. 그러나 이 방법은 가우시안 잡음 분포 하에서 적용해야 하는 등 제한적인 조건이 수반되는 문제점을 안고 있다. 반면에 파티클 필터(PF)는 제한적인 조건 없이 비선형/비가우시안 시스템에도 적용할 수 있는 상태 추정기법 이라 할 수 있겠다. 그러나 이 방법 또한 파티클의 갯수가 늘어나면 계산량이 크게 증가하는 등의 단점을 지니고 있다. 본 논문에서는 이러한 단점들을 극복하기 위하여 UKF와 PF를 결합한 언센티드 파티클 필터(UPF) 알고리즘을 제안하였다. 본 알고리즘의 성능을 확인하기 위하여 기존의 PF와 UPF 알고리즘을 2-자유도 펜듈럼 시스템을 이용하여 시뮬레이션 하였다. 결과적으로 본 논문에서 제안한 방법이 PF에 비하여 비선형/비가우시안 시스템의 상태 추정에 더욱 적합 함을 확인할 수 있었다.
본 논문은 ATSC(Advanced Television System Committee) 8VSB(Vestigial Side Band) 방식의 디지털 지상파 TV 시스템에서 수신 채널 등화기의 수렴속도와 MSE(Mean Square Error) 성능을 개선하기 위한 DCT HLMS DFE(Discrete Cosine Transform Hierarchical Least Mean Square Decision Feedback Equalizer) 알고리즘을 제안한다. 제안한 알고리즘은 기존의 LMS(Least Mean Square) DFE 를 계층적 구조의 서브필터로 변형함으로써 수신 데이터 상관 행렬의 고유값 범위를 줄인다. 또한, DCT와 전력추정 알고리즘을 사용하여 다중경로 수신환경에서 수신 신호의 왜곡 및 지연에 따른 입력데이터에 대한 고유값 확산을 작게 한다. 전산 모의실험 결과, 제안한 DCT HLMS DFE는 ATTC(Advanced Television Technology Center)가 제시한 디지털 지상파 TV 방송 채널 중 A, B 그리고 F 채널에서 채널 등화 이후의 심볼 에러율이 0.2일 때 기존의 LMS BFE 보다 SNR이 각각 약 3.8dB, 5dB 그리고 2dB 개선되었다.
본 논문에서는 해양작업 상태의 하중조건을 고려한 부유식 원유생산 저장 하역장치에 설치된 라이져 보강구조의 강도설계에 관련하여 다양한 근사화 기법 기반 설계최적화 및 그 성능을 비교하고자 한다. 설계최적화 문제는 하중조건별 구조강도의 제한조건 하에서 중량을 최소화하여 설계변수인 구조 부재치수가 결정되도록 정식화된다. 비교 연구를 위해 사용된 근사화 기법은 반응표면법 기반 순차적 근사최적화(RBSAO), 크리깅 기반 순차적 근사최적화(KBSAO), 그리고 개선된 이동최소자승법(MLSM) 기반 근사최적화 기법인 CF-MLSM와 Post-MLSM이다. RBSAO와 KBSAO의 적용을 위하여 상용프로세스 통합 설계최적화(PIDO) 코드를 사용하였다. 본 연구에 적용한 MLSM 기반 근사최적화 기법들은 제한조건의 가용성을 보장할 수 있도록 새롭게 개발되었다. 다양한 근사화 모델 기반 설계최적화 기법에 의한 결과는 설계 해의 개선 및 수렴속도 등의 수치적 성능을 기준으로 실제 비근사 설계최적화 결과와 비교 검토하였다.
본 논문에서는 RF(Radio Frequency) 중계기에서 그룹화 CMA(Constant Modulus Algorithm)와 LMS(Least Mean Square) 알고리즘을 이용하여 적응 필터를 적용시킨 새로운 혼합 간섭 제거기를 제안한다. 송신 안테나에서 수신안테나로 궤환되는 신호는 수신 시스템의 성능을 저하시킨다. 제안한 간섭 제거기는 그룹화 CMA 알고리즘 간섭 제거 기법을 적용시키기 때문에 기존 구조보다 나은 채널 적응 성능과 낮은 MSE(Mean Square Error)을 가진다. 이 구조는 기존 비선형 간섭 제거기에 비해 같은 MSE(Mean Square Error)에 대한 반복수와 하드웨어 복잡도를 줄여준다. 즉, 제안한 알고리즘은 LMS 알고리즘에 비해 평균 자승 에러가 적응 상수에 따라 2.5 dB 또는 4 dB 정도 낮은 값을 보였다. 또한, VSS(Variable Step Size)-LMS 알고리즘에 비해 수렴 속도가 빠르고, 비슷한 평균 자승 에러를 가진다.
디지털 전치 왜곡기법은 비선형 전력증폭기의 역함수에 해당하는 디지털 전치왜곡 특성을 찾아 송신신호를 미리 왜곡 시켜줌으로써 비선형 전력증폭기를 선형화시키는 기술이다. 일반적으로 전력증폭기는 시간과 전력 그리고 온도에 따라 비선형 특성이 변하기 때문에 디지털 전치왜곡기법에서는 송신신호와 되먹임 신호를 주기적으로 메모리(RAM)에 저장하여 전력증폭기 특성 함수의 역함수인 전치 왜곡 계수를 찾게 된다. 하지만 적응형 알고리즘이 원하는 전치왜곡 계수에 수렴하기 위해서는 긴 샘플이 요구되는데 이는 많은 메모리를 요구한다. 본 논문에서는 전치왜곡 엔진부에서 짧은 길이의 메모리를 사용하지만 이 메모리의 샘플을 재활용하여 반복 연산 수행을 통해 긴 용량의 메모리를 이용하여 구현하였을 경우와 유사한 성능을 얻는 방법을 제안하며 이를 컴퓨터 모의실험을 통해 성능 비교 분석한다.
최근에 제안된 TCP Vegas는 네트워크의 상황을 예측하고, 상황에 맞는 전송율의 변화를 통해 흐름제어와 혼잡제어를 함으로써 기존의 TCP Reno에 비해 많은 성능향상을 이루었다. 그러나 TCP Vegas는 네트워크에 대한 모델이 없기 때문에 네트워크의 가용대역폭을 충분히 활용할 정확한 전송율을 계산하지 못하고, 제한된 윈도우의 변화만을 적용시킴으로 인해, 급변하는 가용 대역폭의 변화에 적응을 하지 못하고 손실이 발생할 가능성이 여전히 존재한다. 본 논문에서는 이러한 단점을 극복하고자 TCP의 단대단 연결을 큐잉 시스템으로 모델링하여 적절한 전송율을 결정함으로써, 안정되고 빠르게 가용 대역폭에 수렴하는 알고리듬을 제안한다. 시뮬레이션을 통한 TCP Vegas와의 성능 비교 결과는 제안된 알고리듬이 가용 대역폭이 급변하는 네트워크 환경에서 TCP Vegas 보다 안정적이고 빠르게 반응하기 때문에 외부 트래픽의 변화에 더 잘 적응하고 처리율을 향상시키는 결과를 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.