• 제목/요약/키워드: 수동력학적 안정성

검색결과 8건 처리시간 0.026초

순수한 찬물속에 잠겨있는 경사진 등온벽면 부근의 자연대류에 관한 수동력학적 안정성 (The Hydrodynamic Stability of Natural Convection Flows Adjacent to an Inclined Isothermal Surface Submerged in Cold, Pure Water)

  • 황영규;장명륜
    • 설비공학논문집
    • /
    • 제2권4호
    • /
    • pp.268-278
    • /
    • 1990
  • Hydrodynamic stability equations are formulated for natural convection flows adjacent to a heated or cooled, inclined, isothermal surface in pure water at $4^{\circ}C$, where the density variation with temperature becomes nonlinear. The resulting stability equations, when reduced to ordinary differential equations by a similarity transformation, constitute a two-point boundary-value problem, which was solved numerically. It is found from the obtained stability results that the neutral stability curves are systematically shifted to have lower critical Grashof numbers, as the inclination angle of upward-facing plate increases. Also, the nose of the neutral stability curve becomes blunter as the angle increases. It implies that the greater the inclination of the upward-facing plate, the more susceptible of the flow to instability for the wide range of disturbance wave number and frequency.

  • PDF

차가운 물에 잠겨있는 수직운동 벽면주위의 자연대류에 관한 안정성 (Hydrodynamic Stability of Buoyancy-induced Flows Adjacent to a Vertical Isothermal Surface in Cold Pure Water)

  • 황영규
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.630-643
    • /
    • 1991
  • The hydrodynamic stability equations are formulated for buoyancy-induced flows adjacent to a vertical, planar, isothermal surface in cold pure water. The resulting stability equations, when reduced to ordinary differential equation by a similarity transformation, constitute a two-point boundary-value(eigenvalue) problem, which was numerically solved for various values of the density extremum parameter R=( $T_{m}$ - $T_.inf./) / ( $T_{o}$ - $T_.inf./). These stability equations have been solved using a computer code designed to accurately solve two-point boundary-value problems. The present numerical study includes neutral stability results for the region of the flows corresponding to 0.0.leq. R. leq.0.15, where the outside buoyancy force reversals arise. The results show that a small amount of outside buoyancy force reversal causes the critical Grashof number $G^*/ to increase significantly. A further increase of the outside buoyancy force reversal causes the critical Grashof number to decrease. But the dimensionless frequency parameter $B^*/ at $G^*/ is systematically decreased. When the stability results of the present work are compared to the experimental data, the numerical results agree in a qualitative way with the experimental data.erimental data.

KEB 경계층 유동의 유동특성 해석 (Hydrodynamic Stability Analysis of KEB Boundary-Layer Flow)

  • 이윤용;이광원;황영규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.683-686
    • /
    • 2002
  • The hydrodynamic instability of the three-dimensional boundary-layer over a rotating disk has been numerically investigated for three cases flows using linear stability theory (i.e. Rossby number, Ro = -1, 0, and 1). Detailed numerical values of the disturbance wave number, wave frequency, azimuth angle, radius (Reynolds number, Re) and other characteristics have been calculated for $K{\acute{a}}rm{\acute{a}}n$, Ekman and $B{\"{o}}ewadt$ boundary-layer flows. Neutral curves for these flows are presented. Presented are the neutral stability results concerning the two instability modes (Type I and Type II) by using a two-point boundary value problem code COLUEW that was based upon the adaptive orthogonal collocation method using B-spline. The prediction from the present results on both instability modes among the three cases agrees with the previously known numerical and experimental data well.

  • PDF

수직(垂直) 자연대류(自然對流)의 수동력학적(水動力學的) 안정성(安定性) 계산에 관한 수치해석(數値解析) 방법(方法) (Numerical Techniques in Calculation of Hydrodynamic Stability for Vertical Natural Convection Flows)

  • 황영규
    • 태양에너지
    • /
    • 제8권1호
    • /
    • pp.82-94
    • /
    • 1988
  • The hydrodynamic stability equations for natural convection flows adjacent to a vertical isothermal surface in cold or warm water (Boussinesq or non-Boussinesq situation for density relation), constitute a two-point-boundary-value (eigenvalue) problem, which was solved numerically using the simple shooting and the orthogonal collocation method. This is the first instance in which these stability equations have been solved using a computer code COLSYS, that is based on the orthogonal collocation method, designed to solve accurately two-point-boundary-value problem. Use of the orthogonal collocation method significantly reduces the error propagation which occurs in solving the initial value problem and avoids the inaccuracy of superposition of asymptotic solutions using the conventional technique of simple shooting.

  • PDF

Karman 경계층 유동의 안정성에 관한 연구 (Stability of the K rm n Boundary Layer Flow)

  • 황영규;이윤용
    • 설비공학논문집
    • /
    • 제12권8호
    • /
    • pp.771-781
    • /
    • 2000
  • The Karman boundary-layer, has been numerically investigated for the disturbance wave number, wave velocity, azimuth angle and radius (Reynolds number, Re). The disturbed flow over rotating disk can lead to transition at a much lower Re than that of the well-known Type 1 mode of instability. This early transition is due to the excitation of the Type II mode. Presented are the neutral stability results concerning these modes by solving new formulated vorticity equations with consideration of whole convective terms. When the present numerical results are compared with the previously known results, the value of critical Re corresponding to Type I is moved from Rec,! =285.3 to 270.2 and the value corresponding to Type II is from $Re_{c,2}$=69.4 to 36.9, respectively. Also, the corresponding wave number is moved from $k_1$ =0.378 to $k_1$ =0.389 for Type I; from $k_2$ =0.279 to $k_2$=0.385 for Type II. For Type II, the upper limit of wave number and azimuth angle is $k_U$=0.5872,$varepsilon_U=-18^{\circ}$ , while its lower limit is$k_L$ =0.05, $varepsilon_L=-27^{\circ}$ This implies that the disturbances will be relatively fast amplified at small Re and within narrow bands of wave number compared with the previous results.

  • PDF

$K{\acute{a}}rm{\acute{a}}n$ 경계층 유동의 공간증폭에 관한 이론적 연구 (A study of the spatial amplification of the $K{\acute{a}}rm{\acute{a}}n$ boundary-layer)

  • 황영규;이윤용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.585-590
    • /
    • 2000
  • The hydrodynamic instability of the three-dimensional boundary layer on a rotating disk introduces a periodic modulation of the mean flow in the form of stationary cross flow vortices. Detailed numerical values of the growth rates, neutral curves and other characteristics of the two instabilities have been calculated over a wide range of parameters. Presented are the neutral stability results concerning the two instability modes by solving new linear stability equations reformulated not only by considering whole convective terms but by correcting some errors in the previous stability equations. The present stability results are agree with the previously known ones within reasonable limit. The flow is found to be always stable for a disturbance whose dimensionless wave number at Re=1200 is greater than 0.75. Also, the spatial amplification contours have been calculated for the moving disturbance wave, whose azimuth angle is between ${\varepsilon}=15^{\circ}$ and $12.5^{\circ}$.

  • PDF

회전원판 유동의 제2형 불안정성 공간증폭에 관한 이론적 연구 (A study of the spatial amplification of the Type II instability for the Rotating-disk flow)

  • 이윤용;이광원;황영규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.481-486
    • /
    • 2001
  • The hydrodynamic instability of the three-dimensional boundary layer on a rotating disk introduces a periodic modulation of the mean flow in the form of stationary cross flow vortices. Detailed numerical values of the growth rates, neutral curves and other characteristics have been calculated for the Type II-instabilities. Presented are the neutral stability results concerning the two instability modes by solving new linear stability equations reformulated not only by considering whole convective terms but by correcting some errors in the previous stability equations. The present stability results are agree with the previously known ones within reasonable limit. The spatial amplification contours have been calculated for the moving disturbance wave, whose azimuth angle is between $\varepsilon=-10^{\circ}$ and $-20^{\circ}$. The transition flow of the moving disturbance wave will be developed at $\varepsilon=-15^{\circ}$ and Re=352 corresponding at the growth rates n = 5.8 from the spatial amplification contours.

  • PDF

자기 유변 유체를 이용한 반능동 감쇠기의 개발 (Development of Semi-active Damper by Magneto-Rheological Fluid)

  • 정병보;권순우;김상화;박영진
    • 유변학
    • /
    • 제11권2호
    • /
    • pp.105-111
    • /
    • 1999
  • 감쇠기는 기계 시스템에서 에너지를 소모하는데 사용되는 요소이다. 이러한 감쇠기에는 수동 감쇠기, 능동 감쇠기, 반능동 감쇠기 등의 종류가 있다. 반능동 감쇠기는 수동 감쇠기에 비해서 더 좋은 성능을 내면서 능동 감쇠기보다는 더 작은 동력원을 필요로 하는 장치로 상황에 따라서 그 감쇠력 특성을 변화 시킬 수 있다. 본 논문은, 자기 유변 유체를 이용한 반능동 감쇠기의 개발에 관한 것이다. 자기 유변 유체는 가제어성 유체의 일종으로 인가 자기장에 대해서 그 유동학적 성질이 변하며 높은 항복응력, 낮은 점성계수, 불순물에 대한 안정성과 넓은 사용 온도 범위 등의 장점을 가진 재료이다. 이를 이용할 경우 간단한 구조로 반능동 감쇠기를 설계할 수 있을 뿐만 아니라 빠른 응답성 등의 효과도 기대할 수 있다. 본 연구에서는 자기 유변 유체를 이용하여 설계·제작된 몇 가지 종류의 감쇠기들을 통하여 그 응용 방법과 범위 그리고 응용 시 수반되는 문제점 등을 제시하였다.

  • PDF