• Title/Summary/Keyword: 송신 파형

Search Result 77, Processing Time 0.021 seconds

A Study on Accuracy Improvement for Range and Velocity Estimates in a FM-CW Radar (FM-CW 레이다에서의 거리 및 속도 추정 정확도 향상에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1752-1758
    • /
    • 2010
  • A FM-CW radar is used for the various purposes as a remote sensing device since it has the advantages of the relatively simple implementation and the low probability of signal interception. A FM-CW radar uses the same frequency modulated continuous wave for both transmission and demodulation. Therefore, the received beat frequency represents the range and Doppler information of targets. However, using the conventional FFT method, the degree of accuracy and resolution in the spectrum estimation can be seriously degraded in the detection and tracking of fast moving targets because of the short dwell time. Therefore, in this paper, the model parameter estimation methods called as an autoregressive method is applied to overcome these problems and showed that the improved accuracy and resolution can be obtained for the target range and velocity estimation.

Design of Multi-Mode Radar Signal Processor for UAV Detection (무인기 탐지를 위한 멀티모드 레이다 신호처리 프로세서 설계)

  • Lee, Seunghyeok;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.134-141
    • /
    • 2019
  • Radar systems are divided into the pulse Doppler (PD) radar and the frequency modulated continuous wave (FMCW) radar depending on the transmission waveform. In particular, the PD radar is advantageous for long-range target detection, and the FMCW radar is suitable for short-range target detection. In this paper, we present design and implementation results for a multi-mode radar signal processor (RSP) that can support both PD and FMCW radar systems to detect unmanned aerial vehicles (UAVs) at short distances as well as long distances. The proposed radar signal processor can be implemented based on Altera Cyclone-IV FPGA with 19,623 logic elements, 9,759 registers, and 25,190,400 memory bits. The logic elements and registers of the proposed radar signal processor are reduced by approximately 43% and 30%, respectively, compared to the sum of logic elements and registers of the conventional PD radar and FMCW radar signal processor.

Development of Deep Learning Model for Fingerprint Identification at Digital Mobile Radio (무선 단말기 Fingerprint 식별을 위한 딥러닝 구조 개발)

  • Jung, Young-Giu;Shin, Hak-Chul;Nah, Sun-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2022
  • Radio frequency fingerprinting refers to a methodology that extracts hardware-specific characteristics of a transmitter that are unintentionally embedded in a transmitted waveform. In this paper, we put forward a fingerprinting feature and deep learning structure that can identify the same type of Digital Mobile Radio(DMR) by inputting the in-phase(I) and quadrature(Q). We proposes using the magnitude in polar coordinates of I/Q as RF fingerprinting feature and a modified ResNet-1D structure that can identify them. Experimental results show that our proposed modified ResNet-1D structure can achieve recognition accuracy of 99.5% on 20 DMR.

Smart Radar System for Life Pattern Recognition (생활패턴 인지가 가능한 스마트 레이더 시스템)

  • Sang-Joong Jung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.91-96
    • /
    • 2022
  • At the current camera-based technology level, sensor-based basic life pattern recognition technology has to suffer inconvenience to obtain accurate data, and commercial band products are difficult to collect accurate data, and cannot take into account the motive, cause, and psychological effect of behavior. the current situation. In this paper, radar technology for life pattern recognition is a technology that measures the distance, speed, and angle with an object by transmitting a waveform designed to detect nearby people or objects in daily life and processing the reflected received signal. It was designed to supplement issues such as privacy protection in the existing image-based service by applying it. For the implementation of the proposed system, based on TI IWR1642 chip, RF chipset control for 60GHz band millimeter wave FMCW transmission/reception, module development for distance/speed/angle detection, and technology including signal processing software were implemented. It is expected that analysis of individual life patterns will be possible by calculating self-management and behavior sequences by extracting personalized life patterns through quantitative analysis of life patterns as meta-analysis of living information in security and safe guards application.

The Realization of RFID Tag Data Communication System Using CC1020 (CC1020을 이용한 RFID Tag 데이터 통신 시스템 구현)

  • Jo, Heung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.833-838
    • /
    • 2011
  • RFID system in manufacturing industry is used to collect, categorize, and process the data of products. To install RFID system for a large factory, a large amount of wired data communication network is necessary for RS232 communication. If the installed location of RFID system in the factory is changed or extended, a reinstallment is required for the already installed wired data network. A large amount of time/financial reinvestment is necessary for such reinstallation. By using wireless data communication network, however, the initial installation and reinstallation are very simple. In this paper, we implemented a wireless communication system and RFID system. We used the CC1020 chip for wireless communication system and EM4095 chip for RFID system. CC1020 chip enables highly-reliable data communication, and by setting a simple status register, it can switch between transmitting/receiving status and it can choose the desired frequency of either 400 MHz or 900 MHz. Also, Communication range is 50 m, if external antenna is used. EM4095 is a chip for RFID reader system with the carrier frequency of 125 KHz. This chip can implement the reader system by connecting a small number of components. And EM4100 was used for RFID system. EM4100 is read-only type. Atmega128 is used to control a wireless communication system and RFID system. We confirm that the system can communicate without error up to 50 m from sender. In the paper, the circuit diagram and operation program for CC1020 and RFID system are presented. The system used in the experiment is shown in pictures, and the data movement pattern of CC1020 is shown in the diagram, and the performance of each transmission method is presented.

Spectral Analysis Method to Eliminate Spurious in FMICW HRR Millimeter-Wave Seeker (주파수 변조 단속 지속파를 이용하는 고해상도 밀리미터파 탐색기의 스퓨리어스 제거를 위한 스펙트럼 분석 기법)

  • Yang, Hee-Seong;Chun, Joo-Hwan;Song, Sung-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.85-95
    • /
    • 2012
  • In this thesis, we develop a spectral analysis scheme to eliminate the spurious peaks generated in HRR Millimeterwave Seeker based on FMICW system. In contrast to FMCW system, FMICW system generates spurious peaks in the spectrum of its IF signal, caused by the periodic discontinuity of the signal. These peaks make the accuracy of the system depend on the previously estimated range if a band pass filter is utilized to eliminate them and noise floor go to high level if random interrupted sequence is utilized and in case of using staggering process, we must transmit several waveforms to obtain overlapped information. Using the spectral analysis one of the schemes such as IAA(Iterative Adaptive Approach) and SPICE(SemiParametric Iterative Covariance-based Estimation method) which were introduced recently, the spurious peaks can be eliminated effectively. In order to utilize IAA and SPICE, since we must distinguish between reliable data and unreliable data and only use reliable data, STFT(Short Time Fourier Transform) is applied to the distinguishment process.

Improving TCP Performance by Limiting Congestion Window in Fixed Bandwidth Networks (고정대역 네트워크에서 혼잡윈도우 제한에 의한 TCP 성능개선)

  • Park, Tae-Joon;Lee, Jae-Yong;Kim, Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.149-158
    • /
    • 2005
  • This paper proposes a congestion avoidance algorithm which provides stable throughput and transmission rate regardless of buffer size by limiting the TCP congestion window in fixed bandwidth networks. Additive Increase, Multiplicative Decrease (AIMD) is the most commonly used congestion control algorithm. But, the AIMD-based TCP congestion control method causes unnecessary packet losses and retransmissions from the congestion window increment for available bandwidth verification when used in fixed bandwidth networks. In addition, the saw tooth variation of TCP throughput is inappropriate to be adopted for the applications that require low bandwidth variation. We present an algorithm in which congestion window can be limited under appropriate circumstances to avoid congestion losses while still addressing fairness issues. The maximum congestion window is determined from delay information to avoid queueing at the bottleneck node, hence stabilizes the throughput and the transmission rate of the connection without buffer and window control process. Simulations have performed to verify compatibility, steady state throughput, steady state packet loss count, and the variance of congestion window. The proposed algorithm can be easily adopted to the sender and is easy to deploy avoiding changes in network routers and user programs. The proposed algorithm can be applied to enhance the performance of the high-speed access network which is one of the fixed bandwidth networks.