• Title/Summary/Keyword: 손목 부착형 카메라

Search Result 5, Processing Time 0.028 seconds

A User Adaptation Method for Hand Shape Recognition Using Wrist-Mounted Camera (손목 부착형 카메라를 이용한 손 모양 인식에서의 사용자 적응 방법)

  • Park, Hyun;Shi, Hyo-Seok;Kim, Heon-Hui;Park, Kwang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.805-814
    • /
    • 2013
  • This paper proposes a robust hand segmentation method using view-invariant characteristic of a wrist-mounted camera, and deals with a hand shape recognition system based on segmented hand information. We actively utilize the advantage of the proposed camera device that provides view-invariant images physically, and segment hand region using a Bayesian rule based on adaptive histograms. We construct HSV histograms from RGB histograms, and update HSV histograms using hand region information from a current image. We also propose a user adaptation method by which hand models gradually approach user-dependent models from user-independent models as the user uses the system. The proposed method was evaluated using 16 Korean manual alphabet, and we obtained increases of 27.91% in recognition success rate.

An Optimized Hand Pose Estimation in Wearable Wrist-Attached RGB Camera (손목 부착형 웨어러블 RGB 카메라에 최적화된 손 자세 추정기술)

  • Lee, Jeongho;Choi, Changhwan;Min, Jaeeun;Choi, Younggeun;Choi, Sang-Il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.31-34
    • /
    • 2022
  • 본 논문에서는 손목 부착형 웨어러블(Wearable) RGB 카메라를 통해 취득한 손 이미지에 최적화된 손 자세 추정모델과 학습방법을 제안한다. 최근 의료분야에서 활발하게 인공지능이 사용되고 있으며 그 중 이미지 인식을 중심으로 하는 진단 분야[1]가 괄목할만한 성과를 보인다. 본 연구에서는 웨어러블 카메라를 통해 얻은 손 자세를 활용하여 질병 진단에 적용할 계획이다. 또한, 본 연구수행을 통해 질병진단에 필요한 데이터 측정비용 절감 및 개인 맞춤형 진단서비스를 제공할 것으로 기대된다.

  • PDF

Hand Pose Recognition Using Fingertip Detection (손가락 끝 점을 이용한 손 형상 인식)

  • Kim, Kyung-Ho;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1143-1148
    • /
    • 2006
  • 사용자 친화형 유저 인터페이스 구현을 위해 인간의 손 형상을 실시간으로 인식하는 연구의 중요성이 부각되고 있다. 그러나 인간의 손은 자유도가 크기 때문에 손 형상을 정확히 인식하기란 매우 어렵고 또한 피부색과 유사한 색을 가지는 복잡한 배경에서는 더욱 곤란하다. 본 논문에서는 별도의 센서를 부착하지 않고 카메라를 사용하여 피부색 정보에 의한 손 형상을 분할한 후 손가락 끝 점을 찾는다. 찾은 손가락 끝점을 이용하여 방향을 탐지하는 알고리즘에 대해 기술한다. 이 방법은 템플리트 매칭을 이용하여 손가락 끝 점을 탐색한 후 찾은 손 가락 끝 점과 손목의 중심을 이용하여 전, 후, 좌, 우 방향을 탐지한다. 제안하는 방법을 이용하여 3D가상현실 공간에서의 Navigation에 응용하였으며, 실험결과 전진, 후진 및 좌측, 우측의 방향전환도 매우 좋은 결과를 보였다. 또한 본 논문에서 제안하는 방법은 마우스, 키보드, 조이스틱 등의 조작 없이 전, 후, 좌, 우 방향전환을 사용자가 직관적으로 지시함으로써 보다 자연스러운 인간과 컴퓨터의 상호작용을 제공할 수 있을 것이다.

  • PDF

Kinect-based Motion Recognition Model for the 3D Contents Control (3D 콘텐츠 제어를 위한 키넥트 기반의 동작 인식 모델)

  • Choi, Han Suk
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.1
    • /
    • pp.24-29
    • /
    • 2014
  • This paper proposes a kinect-based human motion recognition model for the 3D contents control after tracking the human body gesture through the camera in the infrared kinect project. The proposed human motion model in this paper computes the distance variation of the body movement from shoulder to right and left hand, wrist, arm, and elbow. The human motion model is classified into the movement directions such as the left movement, right movement, up, down, enlargement, downsizing. and selection. The proposed kinect-based human motion recognition model is very natural and low cost compared to other contact type gesture recognition technologies and device based gesture technologies with the expensive hardware system.

User Motion Recognition Healthcare System Using Smart-Band (스마트밴드를 이용한 사용자 모션인식 헬스 케어 시스템 구현)

  • Park, Jin-Tae;Hwang, Hyun-Seo;Yun, Jun-Soo;Park, Gyung-Soo;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.6
    • /
    • pp.619-624
    • /
    • 2014
  • Nowadays there are various smart devices and development with the development of smart phones and that can be attached to the human body wearable computing device has been in the spotlight. In this paper, we proceeded developing wearable devices in watch type which can detect user's movement and developing a system which connects the wearable devices to smart TVs, or smart phones so that users can save and manage their physical information in those devices. Health care wearable devices already existing save information by connecting their systems to smart phones. And, smart TV health applications usually include motion detecting systems using cameras. However, there is a limit when connecting smart phone systems to different devices from various companies. Also, in case of smart TV, because some devices may not have cameras, there can be a limit for users who wants to connect their devices to smart TVs. Wearable device and user information collected by using the smart phone and when it is possible to exercise and manage anywhere. This information can also be confirmed by the smart TV applications. By using this system will be able to take advantage of the study of the behavior of the future work of the user more accurately be measured in recognition technology and other devices.