최근 IoT 네트워크는 이기종의 IoT 장치에서 발생하는 데이터를 효율적으로 처리하기 위해서 다양한 클러스터링 기법들이 연구되고 있다. 그러나, 기존 클러스터링 기법들은 정적으로 네트워크를 분할하는데 초점을 맞추고 있어서 이동이 가능한 IoT 장치에는 기존 클러스터링 기법들이 적합하지 않다. 본 논문에서는 에지 네트워크를 이용하여 IoT 장치의 정보를 수집·분석하기 위한 확률적 딥러닝 기반의 동적 클러스터링 모델을 제안한다. 제안 모델은 수집된 정보의 속성값의 빈도수를 확률적으로 딥러닝에 적용하여 서브넷을 구축한다. 구축된 서브넷은 시드로 추출된 연계 정보를 계층적 구조로 그룹핑할 때 사용하며, IoT 장치에 대한 동적 클러스터링의 속도 및 정확도를 향상시킨다. 성능평가 결과, 제안모델은 기존 모델에 비해 데이터 처리 시간이 평균 13.8% 향상되었고, 서버의 오버헤드는 기존 모델보다 평균 10.5% 낮게 나타났다. 서버에서 IoT 정보를 추출할 때의 정확도는 기존모델보다 평균 8.7% 향상되었다.
본 논문에서는 데이터마이닝 문제에 클러스터링 기법을 적용할 때 발생할 수 있는 문제점 및 속성선택(feature selection)과 그룹 수 산정의 상호연관성을 살펴보고, 데이터 필드의 상대적 중요도와 최적의 그룹 수를 결정하는 수리적 모형을 제시한다. 또한, 이 모형을 풀기 위하여 K-means 알고리즘을 이용한 유전 알고리즘을 제시한다.
최근 사용자들의 궤적 분석을 통해 사용자의 성향에 적합한 정보를 추천해주는 연구들이 진행되고 있다. 이러한 연구들은 여행지 추천, 친구 추천 등과 같은 응용 서비스를 위해서 클러스터링 기법과 패턴 매칭 기법을 많이 사용하고 있다. 그러나 클러스터링 기법은 추천 받는 사용자의 선호도가 반영되지 않고, 다른 사용자들의 선호도에 따라 추천을 해주는 단점이 존재한다. 또한, 패턴 매칭 기법은 다른 사용자와의 POI(Point of Interest)의 유형과 거리를 비교하여 추천을 수행하기 때문에 사용자의 세부적인 선호도를 반영할 수 없는 단점이 존재한다. 이러한 기존 연구들을 보완하기 위해 본 논문에서는 POI의 속성 정보와 사용자의 이동 패턴을 고려한 POI을 추천 기법을 제안한다. 제안하는 기법은 크게 사용자의 속성 정보를 이용해서 선호도를 계산하고 선호도가 다른 궤적을 필터링하는 부분과 패턴 매칭 기법을 사용하여 근접한 궤적을 찾는 부분으로 구성된다. 제안하는 기법의 우수성을 입증하기 위해서 추천된 POI 궤적과 사용자 POI 궤적을 비교하여 두 궤적의 이동 패턴이 유사함을 확인하였다.
관계형 데이타베이스 환경에서 데이타 분할은 트랜잭션 혹은 질의에 요구되는 데이타량과 직접적인 관련이 있다. 본 논문에서 고려하는 데이타 분할은 중복이 없는 수직 분할로 다음 두 단계로 이루어져 있다. 첫째 단계에서는, 각 속성들간의 친밀도를 최대화시키는 0-1 정수 모형으로 속성들을 클러스터링한다. 이 단계의 결과를 초기 단편이라 한다. 두번째 단게에서는, 트랜잭션에 기반한 분할 방법을 이용하여 비용요소가 직접적으로 고려되지 않은 초기 단편을 변환시킨다. 트랜잭션에 기반한 분할 방법이란 트랜잭션 위주로 속성들을 나누는 것이다. 이 단계에서는 트랜잭션 수행에 요구되는 논리적인 액세스량을 비교 척도로 한다. 즉, 이 논문에서 제안한 수직 분할은 친밀도를 최대로 하는 최적화 모형으로 초기 분할을 한 후, 트랜잭션에 근거한 분할 방법을 이용한 발견적 기법으로 해를 개선시켜 나간다.
FCM 클러스터링 알고리즘은 대표적인 분할기반 군집화 알고리즘이며 다양한 분야에서 성공적으로 적용되어 왔다. 그러나 FCM 클러스터링 알고리즘은 잡음 및 지역 데이터에 대한 높은 민감도, 직관적인 결과와 상이한 결과 도출 가능성이 높은 문제, 초기 원형과 클러스터 개수 설정 문제 등이 존재한다. 본 논문에서는 FCM 알고리즘의 결과를 해당 속성의 데이터 축에 사상하여 퍼지구간을 결정하고, 결정된 퍼지구간을 FDT에 적용함으로써 FCM 알고리즘이 가지는 문제 중 잡음 및 데이터에 대한 높은 민감도, 직관적인 결과와 상이한 결과 도출 가능성이 높은 문제를 개선하는 시스템을 제안한다. 또한 실제 교통데이터와 강수량 데이터를 이용한 실험을 통하여 제안 모델과 FCM 클러스터링 알고리즘을 비교한다. 실험 결과를 통해 제안 모델은 잡음 및 데이터에 대한 민감도를 완화시킴으로써 보다 안정적인 결과를 제공하며, FCM 클러스터링 알고리즘을 적용한 시스템보다 직관적인 결과와의 일치율을 높여줌을 알 수 있다.
비구조화 P2P 시스템은 오늘날 인터넷에서 가장 널리 사용되지만, 파일의 배치는 임의로 이루어지며, Peer와 컨텐츠간에는 어떤 상관관계도 존재하지 않는다. 또한 보낸 모든 질의가 원하는 데이터를 찾았는지에 대한 보장도 없다. 본 논문에서는 비구조화된 P2P시스템에서 군집형 계층 클러스터링을 사용하여 노드들을 클러스터화함으로써 검색을 향상시키는 방법을 제시한다. 제안한 기법과 k-means를 사용한 기법간에 노드 클러스터링을 위한 지연시간을 비교하였다. 또한 제안한 알고리즘, k-means 클러스터링, 클러스터링을 사용하지 않은 방법간에 한 네트워크 토폴로지에서 데이터를 찾기 위한 지연시간에 대해 시뮬레이션을 수행하였다. 시뮬레이션 결과 제안한 기법의 지연시간이 다른 방법들보다 짧았음을 알 수 있었다.
본 논문은 한국원자력연구소 내에서 가동 중인 하나로 원자로의 방사선감시시스템 소프트웨어 개발에 있어서 속성기반설계를 적용한 사례를 소개한다. 본 논문에서 채택한 속성기반설계는 시스템의 기능요건 및 품질요건 도출, 이를 만족하기 위한 전술 설정, 설정된 전술에 근거하여 시스템 아키텍처 결정, 확정된 아키텍처를 구현 및 검증하는 과정으로 이루어진다. 하나로 방사선감시시스템의 개발요건으로부터 사용성, 가용성, 유지보수성. 호환성, 확장성 과 같은 품질속성을 추출하였으며, 개발 전술로는 이중화된 서버에 다수의 클라이언트가 연결되는 클라이언트-서버클러스터링 전술과 객체지향적 데이터 처리 및 디스플레이 설계 전술을 채택하였다. 단기간 내에 개발을 완수해야하는 방사선감시시스템 개발에 속성기반설계를 적용함으로써 보다 효율적으로 과제를 성공시킬 수 있었다.
본 논문에서는 이동 에드혹 네트워크(Mobile Ad hoc Network: MANET)에서의 상황인식 기반의 스케쥴링 기법인 DDV(Dynamic Direction Vector)-hop알고리즘을 제안한다. 기존 MANET에서는 노드의 이동성으로 인한 동적 네트워크 토폴리지, 네트워크 확장성 결여의 대한 취약성을 지니고 있다. 본 논문에서는 계층적 클러스터 단위의 동적인 토폴로지에서 노드가 이동하는 방향성 및 속도에 대한 노드의 이동 속성 정보를 고려하여 클러스터를 생성 및 유지하는 DDV-hop 알고리즘을 제안한다. 제안된 알고리즘은 클러스터 헤드노드를 기준으로 클러스터 멤버노드의 방향성 및 속도의 속성 정보를 비교하여 유사한 노드간 클러스터링을 구성하고, 이로부터 헤드노드를 선택하는 방법이다. 실험결과, 제안하는 알고리즘이 네트워크의 부하를 감소시키고 네트워크 토폴로지를 안정적으로 유지할 수 있음을 확인하였다.
한정된 용량의 배터리에 의존하는 MANET(Mobile Ad-hoc Network)에서는 에너지 효율을 높이기 위한 다양한 클러스터링 기법과 라우팅 알고리즘이 연구되고 있다. 일반적으로 무선 Ad-hoc 네트워크에서는 LEACH와 같은 클러스터 기반의 동적 라우팅 알고리즘이 많이 사용된다. 본 논문에서는 클러스터 내의 각 노드가 가지는 속성을 고려하여 클러스터를 생성하고 노드를 관리하는 TICC(Time Interval Clustering Control) 알고리즘 기법을 제안한다. 제안한 TICC은 노드의 속성 중의 하나인 베터리 값 즉 에너지 값으로 노드의 에너지 레벨을 분류한다. 그리고 분류된 에너지 레벨에 대응하는 시간차 컨트롤 기법을 이용하여 클러스터링 과정을 수행하거나 노드들을 관리한다. 특히 제안한 TICC 알고리즘은 MANET에서 클러스터의 생성, 재생성, 진입 노드 및 이탈 노드의 검출과 관리를 통해 노드의 에너지 관리 효율을 향상시키고 클러스터의 Lifetime을 증가시키는 결과를 보여주었다.
본 논문에서는 상호 관계에 기반한 자동 이미지 주석 생성 방법을 보인다 새로운 실험 이미지를 위한 자동 주석의 생성은 훈련 데이타 내의 주석과 함께 주어진 이미지들을 이용하여 이미지의 시각적 속성과 텍스트 속성의 상호 관계를 발견해 냄으로 수행된다. 본 논문에서 제시하는 상호 관계 기반 자동주석 생성 모델은 1) 시각적 속성의 적절한 군집화, 2) 시각적 속성과 텍스트 속성의 가중치 부여, 3) 노이즈 제거를 위한 차원 축소 등의 요소를 고려하여 설계된다. 실험은 680 MB의 Corel 이미지 데이터를 이용하여 각 10개의 데이타 집합에 대해 수행되었으며, 실험 결과, 시각적 속성과 텍스트 속성에 대한 가중치 부여와 시각적 속성의 적절한 군집화가 모델의 성능을 향상시키며, 본 논문에서 제시한 상호 관계기반 모델이 기존의 EM을 이용한 자동 주석 생성 모델에 비해 45%의 상대적 성능 향상을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.