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Abstract This paper presents correlation-based automatic image captioning. Given a training set
of annotated images, we want to discover correlations between visual features and textual features,
so that we can automatically generate descriptive textual features for a new unseen image. We develop
models with muitiple design alternatives such as 1) adaptively clustering visual features, 2) weighting
visual features and textual features, and 3) reducing dimensionality for noise sup-pression. We
experiment thoroughly on 10 data sets of various content styles from the Corel image database, about
680MB. The major contributions of this work are! (a) we show that careful weighting visual and
textual features, as well as clustering visual features adaptively leads to consistent performance
improvements, and (b) our proposed methods achieve a relative improvement of up to 45% on
annotation accuracy over the state-of-the-art, EM approach.
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textual and visual features provided by these

matching images based on visual similarities, have ) .
. .. .. annotated collections improves the performance of
some limitations due to missing semantic informa- )
. . . . search and retrieval{5-8]. However, manual anno-
tion[1-4]. Manually annotating images with words T .
. .. R tation is time consuming and error-prone. Recently,
could provide such semantic information. There are o . . .
. . . automatic image annotation, which derives words
some collections where images or videos are anno-—

tated with descriptive texts (e.g., the Corel data

- o] =R& dE et #l9l Post-doc. E7AIU 8l AU

v 39 FZidddg e AR A TAES 7Y
hiyang@cs.cmu.edu
t+ouE o sy RR gt HFE Tt
jypan@cs.cmu.edu
tou) 4 AW EWE 2y
duygulu@cs.cmu.edu
it o] 2] 9 SRz gy AR
christos@cmu.edu
RS 0 20049 69 11
AArgER 0 2004 8Y 19

from image content, has achieved promising results.

Leveraging the existing text retrieval systems,
automatic image annotation could be useful for the
construction of content-based image retrieval sys-—
tems supporting semantic information.

Several automatic image annotation methods have
been proposed for better indexing and retrieval in
image databases[5,7,9-111].

approaches generate keywords for an

large Some of these

image by
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mapping image regions to terms. In other words,
captioning is conducted by finding the association
between constituent regions of images and given
terms for the images. Mori et al. [12] use co-
occurrence statistics of image grids and words for
modelling the association. Duygulu et al. {10] view
the mapping as a translation of image regions to
words, and learn the mapping between region
groups and words by using an EM algorithm.
Recently, probabilistic models such as the cross-
media relevance model [7] and latent semantic
analysis (LSA) based models [28] are also proposed
for captioning.

In this paper,

automatic image captioning. Given a training set of

we present correlation-based
annotated images, we want to discover the corre-
lations between visual features and textual features,
so that we can automatically generate descriptive
textual features for a new unseen image. The
framework of automatic image captioning consists
of two parts: constructing a model for the asso-
ciation, and annotating new images. Images in the
annotated image set are first segmented and num-
erical feature vectors are extracted. The segmented
image feature vectors (each could be a blob or a
grid) are clustered into K clusters. The K cluster
centers together form a visual vocabulary for the
image content.

A model is constructed to capture the association
between terms and the visual vocabulary. Model
parameters are trained using the given annotated
image set. When a new image arrives, the new
image is segmented. Each segmented region is
labeled by a token in the visual vocabulary, based
on some similarity function. Captioning terms for
the new image will most likely describe the content
of the image. The likelihood of each term is
determined by the model trained in the first step,
given the visual tokens of the new image. We
develop models with multiple design alternatives
such as 1) adaptively clustering visual features, 2)
weighting visual features and textual features, and
3) reducing dimensionality for noise suppression, for
the better association model. We experiment tho-
roughly on 10 data sets of various content styles
from the Corel image database, about 680MB. The

major contributions of this work are: (a) we show

that careful weighting on visual and textual
features, as well as adaptive visual feature clus-
tering, leads to consistent performance improve-
ments, and (b) our proposed methods achieve a
relative improvement of up to 45% on annotation
accuracy over the state—of-the-art, EM approach.
The rest of the paper is organized as follows:
Section 2 gives the related work, followed by
section 3 where an adaptive method for obtaining
image region groups is explained. The proposed
uniqueness weighting scheme and correlation—based
image annotation methods are given in Section 4.
Section 5 shows the experimental results on the
Corel data set. Several discussions are given in

Section 6. Section 7 concludes the paper.

2. Related Work

There have been several attempts at captioning
images automatically. Basically, the essential ques-—
tion is how we associate the visual content of an
image with its semantics (expressed by the anno-
tated terms). Previous approaches differ in how the
image’s visual content is represented (e.g., in blobs
or regions) and in the particular models which are
used to capture the association (e.g. language
translation model or conditional random field).

Image captioning In this study, we are interested
in linking the visual and textual features for anno-
tating the images automatically. Automatic image
captioning is useful since manual annotation of
these collections is subjective and requires a huge
amount of human effort.

Maron et al. [13] use multiple-instance learning
to train classifiers to identify particular keywords
from image data using labeled bags of examples. In
their approach, an image is a “positive” if it
contains an object (e.g. tiger) in the image but
"negative” if it doesn’t. Wenyin et al. [14] propose
a semi—automatic strategy for annotating images
utilizing users’ feedback of the retrieval system.
The query keywords which receive positive feed-
back are collected as possible annotation words to
the retrieved images. Li and Wang [11] model
image concepts with a 2-D multiresolution Hidden

Markov Model and label images with the concepts
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that best fit the content.

Recently, probabilistic models are proposed to
capture the joint statistics between image regions
Mori

occurrence statistics collected for words and image

and caption terms. et al. [12] use co-
areas which are defined by a fixed grid. Duygulu
et.al [10] utilize machine translation approach pro-
posed by Brown et al. [15] to find the correspon-
dences between words and types of image regions.
Jeon et al. [7] propose a cross-media relevance
model for words and types of image regions, which
the that an

described both using image features and words.

takes advantage image can be
Monay et al. [28] use latent semantic analysis (LSA)
to find the association. These methods quantize or
cluster the image features into discrete tokens and
find
captioning terms. The quality of tokenization could

correlations between these tokens and

effect the captioning accuracy.
Other the
between words and the numerical features of the

works model directly association
regions. Barnard et al. [6,9,16] propose a generative
hierarchical model, inspired by Hofmann's aspect
model for text [17), for integrating the semantic
the

information provided by image features, Blei and

information provided by text and visual
Jordan [56] propose correspondence Latent Dirichlet
Allocation (Corr-LDA) model that finds conditional
relationships between latent variable representations
of sets of image regions and sets of words. The
continuous-space relevance model (CRM) [18], and
the contextual model which models spatial con-
sistency by Markov random field [19] are also
proposed to find the actual association between
image regions and terms for image annotation and
a greater goal of object recognition.

‘While most previous approaches are complex and
delicate, we want to explore simpler yet superior
methods, motivated by some approaches employed
for efficient document retrievals.

Clustering: One important preprocessing step is
the construction of the visual and textual vocabu-
laries. The model is then constructed to link the
visual and textual tokens in the vocabularies. Many
clustering algorithms can be used for the vocabu-

lary construction [20], where mostly used ones are
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K-means, K-Harmonic means [21], OPTICS [22]
and [23]. However, all these algorithms need the
user to specify the number of desirable clusters K.

There are works which try to adaptively deter—
mine the number of clusters K. X-means [24] and
G-means [25] determine the optimal K for the
K-means algorithm by evaluating the quality of
clusters using different criteria, namely BIC and
normality statistical test. They start with small K,
and split the clusters of poor quality (effectively
increases K) until the criteria are met. Among all
these algorithms, we choose the G-means algorithm
in this paper.

3. Adaptive Visual Vocabulary Generation

The common approach for automatic image cap-
tioning is to find the association between the visual
elements and the caption terms of an image. At
first, two sets of vocabularies, namely the voca-
bulary of visual information (visual vocabulary) and
that for the content semantics (content vocabulary),
are constructed. Usually, a set of terms are used as
the vocabulary for content semarntics. The visual
vocabulary consists of tokens representing visual
information on either a sub-region (a grid or an
image segment) or the entire image. Then, a model
is used to capture the association between tokens
from the two vocabularies. In this work, we follow
the work in [10] and use a term set as the content
vocabulary, and a blob-token set as the visual
vocabulary. Let us begin with the definition of an
annotated image set.

Definition 1 (Annotated image set) An annotated
image set is a set of images I = {I;, .., Ix}, where
each image I; is annotated with a set of W; terms
{wii, .., wiwi}, where W; is the number of an-
notated terms.

Figure 1 gives two examples of annotated images
along with their captioning terms. Let the two
images be I, Iz, then W;=4 and W>=4.

In this paper, we use different font styles for
different types of symbols, namely: bold and italic
symbols for sets (e.g., the image annotation set [ );
bold, uppercase symbols for matrices (e.g., D); bold,
for vectors (eg. q); italic

lowercase symbols

symbols for set sizes (e.g., W).
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(b) cat, forest, grass, tiger

(a) sea, snu, sky

Figure 1 Annotated images

Definition 2 (Term set of an annotated image
set) The term set of an annotated image set I ={Ij,
., In}, denoted as W ={wi,

the collection of all W terms used as annotating

.., Ww}, is defined as

terms for the images in I

Definition 3 (Blob) A blob of an image is a
contiguous, homogeneous region of the image, given
by an image segmentation algorithm.

A blob is usually represented as a continuous-
valued vector of features describing the charac-
teristic of the region. Figure 2 illustrates the blobs
of the two example images in Figure 1, along with
their captioning terms. We use the normalized cuts
algorithm in [26] to break an image into regions,
and then map each region into a 30-d feature
vector, We used features such as the mean and
standard deviation of its RGB values, average
responses to various texture filters, its position in
the entire image layout, and some shape descriptors
(e.g., major orientation and the area ratio of the
bounding region to the real region). All features are
normalized to have zero-mean and unit-variance.
For a given image I, the number of blobs B; is not
necessarily equal to the number of captioning terms
Wi For example, in Figure 2, the numbers of blobs
in each image are B;=5 and B»=2 while the numbers

of words are W; = 4 and W, = 4, respectively.

(a) W, W7, Ws, Wy
Figire 2 The blobs of two annotated images in

(b) W2, Wo,Wio,Wn

Figure 1

Definition 4 (Blob-token) A set of continuous-

valued blobs represented as feature vectors can be

clustered. Each cluster is labeled as a blob-token.
Definition 5 (Blob-token set of an annotated

image set) The blob-token set of an annotated

.., bn}, is defined

as the collection of all B blob-tokens which appear

image set I, denoted as B ={b,

in the individual images of I.

Figure 3 shows three examples of the blob-
tokens. For presentation purpose, these blob-tokens
are semantically labeled as "cat”, "sky” and "sun”,
however, the actual labels to the blob-tokens are
not crucial. The consistency among the member
blobs of a blob-token is more important for app-
lications. In other words, we would like to have all
blobs of a blob-token similar to each other, and

dissimilar to those not belong to this blob-token.

e -
NS e

Blob-token : "cat”

Blob-token : "sky”

Blob-token : "sun”
Figure 3 Three blob-tokens "cat”, "sky” and "sun”,
along with examples of their member
blobs

The quality of blob-tokens would affect the acc-
uracy of image captioning. In [10], the blob-tokens
are generated by applying K-means algorithm on
all the raw blobs in an annotated image set, with
the number of blob~tokens, B, set at 500. However,
the choice of B=500 is by no means optimal.
if the optimal B'=625, then
B=500 would inevitable mixing red blobs with blue

Intuitively, setting

blobs together (i.e, cluster them as the same
blob-token). On the other hand, if B'=325, then
setting B=500 would generate clusters which are
too fine and hurts the algorithm’s ability on gene-
ralization.

In this study, we determine the number of blob
tokens B adaptively using the idea of G-means
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[26]. Essentially, G-means is a wrapper around the
K-means algorithm, it runs K-means starting from
a small number of B, and split clusters (thus, in-
creases B) which are not gaussian. The gaussianity
of a cluster is checked by a statistical test (e.g.,
Kolmogorov-Smirov test) on the distribution of the
data points in that cluster. In our work, the blob-
tokens adaptively found by G-means are the labels
of the clusters. The number of blob-tokens gene-
rated for the training set are all less than 500,
ranging from 339 to 495, mostly around 400. We
refer the reader to [25] for the details.

4. Correlation-based Image Captioning

In this section, we propose correlation-based me-
thods with proper weighting assignments on the
terms and blob-tokens and dimension reduction for
noise suppression. The common goal among the
proposed methods is to have an estimate for
p(wilby), the conditional probability of a term wi
given a blob-token b;. Since the number of terms
and blob-tokens are fixed and finite, the goal is to
estimate an table whose (i, j) item is the desired
p(wilb;), which we called the association table. In
this section, we propose 4 methods to obtain such
estimates, namely, method Corr, Cos, SvdCorr, and
SvdCos.

Table 1 shows the symbols and terminology we

used in the paper.

Table 1 Summary of symbols used in the paper

Symbol | Description
Sets
I annotated image set of N images {L,..., In}
w term set of W terms {wi, .., ww)
B blob-token set of B tokens {bs, .., bs}
Sizes
Wi the number of captioning terms for image I;
B; the number of blob-tokens in image [;

Matrix / Table
D data matrix, [DwiDsg)
Dw image-to-term data matrix

Du image-to-blob-token data matrix

Tcor correlation-based association table

Tcos cosine-similarity association table

Vectors

dwi the i-th column of the matrix Dw

| dpy

the /~th column of the matrix Dy

The correlation between terms and blob-tokens is
computed based on their co-occurrence relation in
the given annotated image set. Recall that each
image in the annotated image set has a set of
blob-tokens, as well as a set of annotated terms.
We can represent each image by a vector of counts
on terms and blob-tokens. If there are W possible
terms and B possible blob-tokens, the entire anno-
tated image set of N images can be represented by
a data matrix Dinuy-wmi. We now define two
matrices: one is unweighted, the other is uniqueness-—
weighted as initial data representation.

Definition 6 (Unweighted data matrix) Given an
annotated image set I = {I;, .., In} with the term
set W and the blob-token set B, the unweighted
data matrix Duw =[Duw_ wiDuw_sl is a N-by-(W+B)
matrix, where the (i, j)-element of the N-by-W
matrix Duw_w is the count of term wj in image I,
and the (i, j)-element of the N-by-B matrix Duyw.s
is the count of blob-token b; in image I;.

The data matrix D is weighted according to the
"uniqueness” of each term(blob-token). If a term
appears only once in the image set, say with image
I, the term is only associated with the blob-tokens
of I;. The more common a term is associated with
the more blob-tokens. The uncertainty of finding
the correct term-and-blob-token association goes
up. In other words, common terms are "noisy”.
Similarly, these arguments hold for blob-tokens.
The idea is to give higher weight to terms (blob-
tokens) which are more "unique” in the training
set, and low weights to noisy, common terms
(blob-tokens).

Definition 7 (Uniqueness weighting and weighted
data matrix) Given a unweighted data matrix Dyw
=[Dyw_wlDuw_g]. Let z (v;) be the number of ima-
ges which contain the term w;j (the blob-token bj).
The weighted data matrix D=[DwlDgl is constructed
from Duw, where the (i, j)-element of Dw (Dp),
dwap (diagy, is

dway = duw_wajp x log N/zj, deap = duwnap X log

N/vi, (n

where N is the total number of images in the
set.

In the following, whenever we mention the data
matrix D, it will be always the weighted data
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matrix.

Example 1 Let the annotated image set I ={I,,
Iz}, with term set W={wi, wy, wi} (e.g., {"boat’,
"sea”, "sky”}) and blob-token set B={bi, bz, bs, ba}
(e.g., {"wood-like-token”,
"plue-token”}).

wi, w2 and blob-tokens bi, bz Then, the corres—

"sea-token”, "sky-token”,

Let image 1; has annotated words

ponding data matrix.
Duw = [Duw_wlDuw s8] —(0 (l] (l)} (1) } ? (l))

The weighted data matrix
D=[Dw|Dsl

:( log@) log(@) 0 | log2) 0 0 )
0 0 log(2)) 0 0 log(® 108(2)

Definition 8 (Method Corr: correlation-based
association table) Let table Tuncor = Dw'Ds. The
correlation-based association table Tcor 1S defined
by normalizing each column of Tun.cer such that
each column sum up to 1. Note that the (,
j)-element of Tcorj can be viewed as an estimate
to p(wilby), the conditional probability of term wi
given blob-token by

Example 2 The table TUN_Corr of the data
matrix in Example 1 is

Dw Ds
:(log(2) log(@ 0 )T (log(2) 0 0 )
0 0 log(2) 0 0 log®) log(2)
(log@)2 0 0 0
(log@)? 0 0
0 0 ( log@)? (log(Z))

The correlation-based association table Tcor by

05000
normalizing each column of Tun_corr 1S [0.5 00 0).
6 011

Example 3 (Without doing weighting on D)
Continue from Example 2, if we define a correlation
table Fun cor with the unweighted Do, ie., we de-
fine Fuw_con=Duw_w Duws and let Fcar be Fun_com,
with columns normalized which each sums to 1.

0503300
0.5 0.33 0 0f.
0 03311

Notice that TCorr is not confused by the "noisy”

We have Feor =

blob-token "bs” and would not annotate terms wi
and wz for the image I.. On the other hand, Fcor
will have probability of 066 of annotating the
wrong terms (w1 or wz) for the image L.

Tcor measures the association between a term
and a blob-token by the co-occurrence counts.

14t AE ofm
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Another possible measurement could be to see how
similar the overall occurrence pattern(over the
training images) of a term and a blob-token is.
Such occurrence patterns are in fact the columns of
Dw or Dp, and the similarity can be taken as the
cosine value between pairs of column vectors.
Definition 9 (Method Cos: cosine-similarity as-
sociation table) Let the i-th column of the matrix

Dw(Ds) be dwi (dm). Let Cosi; be the cosine

similarity between column vectors dw; and dp;,
which is
. __dwrdy
Cosis = TG ol Tdyl
Let the table Tun_ces be a W-by-B matrix whose

(i, j)-element Tun_ces(ij) =Cos;j. Normalize the
columns of Tun ces Such that each column sums up
to 1, and we get the cosine-similarity association
table Tcos.

Note that the table Tcos=
DID, where DDy is the matrix Dw (Ds)

with each column normalized to unit length. Like

cosine-similarity

the correlation-based association table, the (i, j)-
element of Tces(i,j) can also be viewed as an
estimate to the conditional probability of term wi
given blob-token bj, p(wilb;).

Example 4 Continue from Example 1, we have the

)

Hence, the table Tunces 1S ( (1)
, and the cosine-similarity table Tcos is

0
Y
0 011
The low rank representation by Singular Value

1

column—normalized matrix [ D 4 D z]= ((1)
1
01

—_—~ RO
<=
oo
—_—
_—
=

il

OO O

0
0
0
5
5

OO —OoO

0
0
1
0
0

Decomposition (SVD) reveals latent semantics in a
Specifically, SVD is used to

observed

given matrix [27].

clean up the (noisy) term-~document
matrix. They showed that estimating the term-term
correlation after SVD gives better retrieval per-
formance than the one of the observed (noisy)
termm-document matrix. In this paper, we propose to
use SVD to suppress the noise in the data matrix
before learning the association.

Definition 10 (Singular Value Decomposition)

SVD decomposes a given matrix into a product of
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three matrices U, A, V! That is, X = UAVT, where
U=[u, ..., un] and V = [vy, ...
and A is a diagonal matrix. Note that w (vi) are
columns of the matrix U(V). Let A=diag(oi, .., 0
mintnm), then 6 > 0, for j < rank(X), 6;=0, for j >
rank(X).

Note that the SVD of a matrix X can also be

X= mgoa,-u of (2)

The latter terms in the summation contribute less

, Vm] are orthonormal,

written as

to X, as the corresponding 0i's become smaller and
smaller.

The following example shows that SVD is used
to clean up noise and reveals informative structure
in a matrix, by omitting the smallest terms in the

summation {(equation 2).

Example 5 Let X be . Let

OO~

OO

SO OO =

CO—RROO

COR OO
DOOOD
o

(=IO e e N e i s
o

0.5
that X = UAV".
Cleaning up X by representing it using only the

0
0
1
1
0
0
SVD give matrices U, A, V such

first two 0’s, we get the clean up version X

11100000

11100000

00011100 ;
00011100 The cleaned up version X shows
00000000

00000000

the structure of the original X which is hidden by
the noise before applying SVD.

We kept only the first r terms of Equation (2) to
preserve the 90% variance of the distribution. More

rag( X)
specifically, let S90=0.9 x 2 62>Sq, then r is de-

termined as r= Wg]’.m"( Z,lof>S «). In other words,

r is determined capturing 90% of the total variance.
In the following, we denote the data matrix after
SVD as Dewa=[DwsvalDpsval.
correlation-based association tables with SVD.
Definition 11 (Method SvdCorr :correlation-based
table with SVD) Method SvdCorr
generates the correlation-based association table
Tsvacorr following the procedure outlined in Defi-

Now, Let us define

association

nition 8, but instead of starting with the weighted

data matrix D, here the matrix Deva is used.

ZEJ 2 $-& A 31 d A 10 00410

Definition 12 (Method SvdCos : cosine-similarity
table with SVD) Method SvdCos

the cosine-similarity association table

association
generates
Tsvacos following the procedure outlined in Definition
9, but instead of starting with the weighted data
matrix D, here the matrix Dswa is used.

Given an association table by the proposed
methods, an image is annotated by the following
algorithm.

Algorithm 1 (Association table based annotation)
Given an association table Trwwm (W: total number
of terms; B: total number of blob-tokens), and also
the number of captioning terms needed k, an image
with | blob-tokens set B’ = {b'y, ..,

captioned through the following steps:

b’1}, can be

1. Form a query vector q =[qi, .., gsl, where q is
the count of the blob-token bi in the set B’.

2. Compute the term-likelihood vector p =Tq, where
p={p1, ..., DW)',
the term wi.

and pi is the predicted likelihood of

3. If k captioning terms are to be generated, select
the terms corresponding to the top k pi's in the

p vector.

5. Experimental Result

The experiments are performed on 10 Corel
image data sets. Each data set contains about 5200
training images and 1750 testing images. The sets
cover a variety of themes ranging from urban
scene to natural scene, and from artificial objects
Each
average 3 annotated terms and 9 blobs.

like jet/plane to animals. image has in

We apply G-means and uniqueness weighting to
show the effects of clustering and weighting. We
compare our proposed methods, namely Corr, Cos,
SvdCorr and SvdCos, with the state-of-the-art
machine translation approach [10], namely EM
approach as the comparison baseline. Each method
constructs an association table as an estimated
conditional probability of a term wi given a blob-
token b;, (p(wilby)).
then used in Algorithm 1 for annotation. Parti—

These association tables are

cularly, we would like to answer the following
questions:

1. How important is the clustering algorithm?
weighting

2. How does the proposed "uniqueness”
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effect the performance?

3. Which proposed method is best?

We measure the annotation accuracy on each test
image as the percentage of correctly predicted
words as a measurement of the quality of the
association table [10]. Given an image with m true
annotated terms (given by human annotators), we
also predicted m terms for this image using
Algorithm 1. The accuracy of the annotation is
defined as S=Mcorre /m Where meomee is the
number of correct terms annotated for the new
image. The overall performance is expressed by the
average accuracy over all images in a (test) set.

In the rest of the paper, we denote an expe-
riment result by the design alternatives chosen
along the process which generates the result. That
is, each process is denoted with a string in the
following format: "[methodl-[nTokensl-[weighted]”
with 3 fields to fill in the specific choices made at
the 3 stages of the process. The choices for each
stages are:

- field [method]: the 5 methods, EM, Corr, Cos,
SvdCorr, and SvdCos. We also use All to denote
all proposed methods (i.e., all except EM).

» field [nTokens]: B500, where the number of blob~
tokens fixed at 500, AdaptB, where the number
of blob-tokens is determined adaptively.

« field [weighted]: W, if the data matrix is weigh-
ted; UW, otherwise.

We first evaluate the performance of the pro-
posed 4 methods with unweighted 500 blob-token
data sets. Table 2 shows the annotation accuracy
of the proposed methods and the baseline algorithm

A Zi s olu]A] F4 YA 1393

[10] denoted as EM-B500-UW (which means EM
is applied to an unweighted matrix, denoted as
UW, in which the number of blob tokens is 500,
denoted as B500). With fixed 500 blob tokens,
method Cos—-B500-UW achieves an improvement
around 2% in absolute accuracy over EM-B500-
Uw.

The adaptive blob-token generation improves the
in Table 3. Cos-
AdaptB-UW shows 9.4% absolute accuracy impro-
vement over EM-B500-UW, the baseline method.
Using the G-means algorithm (Section 3), the

annotation accuracy shown,

numbers of blob-tokens found for the 10 training
set are all less than 500, ranging from 339 to 495,
mostly around 400. In fact, we found that the
improvement is not only on EM method, but also
on our proposed methods. The annotation accuracy
of All-B500-UW as well as EM-B500-UW are
improved around 7%
blob-tokens.
Figure 4(a)
proposed methods over the EM-B500-UW. Figure
4(b) compares the average annotation accuracy of

with adaptively generated

illustrates the improvement of all

fixed number of blob-tokens of 10 data sets versus
the one of adaptively generated number of blob-
tokens.

Table 4 and Table 5 illustrate the annotation
accuracy with "uniquness” on B500 and AdaptB
data sets, respectably. After applying the “uni-
queness” weighting, the 4 proposed methods on the
fixed number of blob-token data perform about 2%
better and the performances on the adaptive num-
ber of blob-token data gives about 9% improve-

Table 2 Annotation accuracy on "B500-UW" data sets

Dataset 1D EM Corr Cos SvdCorr T SvdCos
001 0.2199 0.2196 0.2445 0.2216 0.1810
002 0.2177 0.2183 0.2464 0.2212 0.1989
003 0.2279 0.2282 0.2423 0.2278 0.1881
004 0.1925 0.1941 0.2118 0.1950 0.1621
005 0.2280 0.2299 0.2594 0.2326 0.2126
006 0.2065 0.2072 0.2410 0.2085 0.1920
007 0.2095 0.2085 0.2312 0.2118 0.1714
008 0.2290 0.2308 0.2555 0.2314 0.1961
009 0.2223 0.2233 0.2414 0.2236 0.1916
010 0.2324 0.2332 0.2586 0.2327 0.2078

Average 0.2213 0.2193 0.2432 0.2206 0.1902
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Table 3 Annotation accuracy on "AdaptB-UW” data sets
DataSet ID # of BT EM Corr Cos SvdCorr SvdCos
001 339 0.2786 0.2548 0.3076 0.2622 0.2021
002 416 0.3000 0.2791 0.3204 0.2875 0.2227
003 392 0.3045 0.2872 0.3121 0.2917 0.2183
004 438 0.2779 0.2593 0.3031 0.2659 0.2242
005 495 0.2945 0.2854 0.3232 0.2905 0.2581
006 353 0.3055 0.2751 0.3239 0.2775 0.2243
007 433 0.2873 0.2665 0.3041 0.2698 0.2078
003 334 0.3073 0.2833 0.3306 0.2870 0.2271
009 388 0.2808 0.2630 0.2978 0.2667 0.2028
010 386 0.3261 0.2970 0.3346 0.3037 0.2445
Average 402 0.2963 0.2751 0.3157 0.2802 0.2232
Q5 A 05 T
R EM-B500-UwW Ml B500
asst Ml CorAdaptB-UW 04st [ Adapts
B Cos-AdaptB-UW
04 1 SvdCorr-AdaptB-UW || 04
[C_] SvdCos-AdaptB-UW
035+ - 0351
2 i §
g [X13 R 5 o3
3 ; g
2025 :‘ b g 0.25 1
5 | 5
:é; 02 + § 02
0151 B B 018
04 ] 1 ot
0.05F i | B 0.05: B
° . ° SwiCorr SvdCos

(a) EM-B500-UW vs. ALL-AdaptB-UW
Figure 4 Comparison of annotation accuracy on AdaptB vs. B500 data sets

Mesl:'ods
(b) AIICEM)-B500-UW vs. AII(EM)-AdaptB-UW

Table 4 Annotation accuracy on "B500-W” data sets

Dataset ID Corr Cos SvdCorr SvdCos
001 0.2439 0.2445 0.2366 0.2219
002 0.2446 0.2464 0.2433 0.2274
003 0.2466 0.2423 0.2499 0.2202
004 0.2137 02118 0.2103 0.1935
005 0.2567 0.2594 0.2559 0.2406
006 0.2358 0.2410 0.2364 0.2266
007 0.2273 02312 0.2304 0.2062
008 0.2517 0.2555 0.2520 0.2318
009 0.2392 0.2414 0.2400 0.2239
010 0.2576 0.2586 0.2543 0.2376

Average 0.2417 0.2432 0.2409 0.2230

ment. As in case of the B500 data set, applying
uniqueness weighting on the AdaptB data set also
raises the performance of methods Corr, SvdCorr
and SvdCos to the level of Cos. Method Corr and
Cos.
weighting improves the performance of all proposed
methods except Cos (Figure 4(b)). Note that the

SvdCorr even outperform The uniqueness

method Cos always perform better than the base-
line method. Intuitively, the uniqueness weighting
multiplies each column dwi or ds by some constant,
which effectively changes the lengths of each
column. However, the angles between them remain
unchanged, so do the cosine values which are

measured by the Cos method.
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Table 5 Annotation accuracy on "AdaptB-W"” data sets
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Dataset ID Corr Cos SvdCorr SvdCos
001 0.3092 0.3076 0.3076 0.2618
002 0.3171 0.3204 0.3184 0.2695
003 0.3176 0.3121 0.3202 0.2585
004 0.3081 0.3031 0.3071 0.2616
005 0.3218 0.3232 0.3224 0.2901
006 0.3248 0.3239 0.3295 0.2833
007 0.3170 0.3041 0.3158 0.2636
008 0.3293 0.3306 0.3354 0.2809
009 0.2986 0.2978 0.2999 0.2579
010 0.3362 0.3346 0.3440 0.2844
Average 0.3180 0.3157 0.3200 0.2712
05 05
IR Weighted Il Weighted
oast [ Unweighted oask ] Unweighted
04t - 04
5.0.35' 5*0.35-
§ 03f 4 5 o3k ]
211025 §!025’ [
§ 02 § LFig
015 A 015}
01 - 01
0.05 0.051
SwiCom M‘Cn Ct;n C;I Svdlcorr SVd‘CDS
Methods Methods
(a) B500 data set (b) AdaptB data set
Figure 5 Annotation accuracy of unweighted vs. weighted data sets
Table 6 Average recall, precision, and the number of used words
EM Corr Cos SvdCorr SvdCos
# of used words 36 57 72 56 132
Avg. Recall 0.0425 0.1718 0.1820 0.1567 0.2128
Avg. Precision 0.0411 0.1131 0.1445 0.1197 0.2079

of
"uniqueness” weighting on the captioning accuracy

Figure 5 shows the effect the proposed
comparing B500 data sets and AdaptB data sets.
We also observed that weighting does not affect
the result of EM method.

Another measurement of the performance is the
recall and precision values for each word. Given a
word w, let the set Rw contains r test images
captioned with the word w by the method we are
evaluating. Let. r” be the actual number of test
images that have the word w (set R'w), and ' be
size of the intersection of Rw and R’w. Then, the
precision of word w is r’/r, and the recall is r//7".
Note that some words could never be used in the

automatic captioning, if they are never used or are

always used for the wrong images(un-annotatable
words). We prefer a method which has fewer
unused words, since it could generalize better to
unseen images. Table 6 shows that the proposed
methods use two to three times more predictable
words on average than the baseline EM approach
dose. In Figure 6 which illustrates recall and
precision for each word, SvdCorr and SvdCos
show more words are located in non-zero points
than Corr and Cos. EM approach captions the
frequent words with high precision and recall, but
misses many words compare to SvdCorr/SvdCos.
That is, EM approach is biased to the training set.

Figure 7 illustrates recall and precision scores of

the top 20 frequent words in the test set. SvdCorr
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Figure 6 Recall and precision for each word

1 T T 1
[ SvdComr-AdaptB-W [ SvdCarr-AdaptB-W
09 Wl EM-B500-UW 08 Sl EM-B500-UW

mountain
boats

0 5 10 15 20 0 5 10 15 20
Words Words
(a) Recall (b) Precision
Figure 7 Recall and precision of the top 20 frequent words
Table 7 Annotation examples of the proposed methods
Figure 1(a) Figure 1(b)

EM-B500-UW sun, clouds, sky, water grass, rocks, sky, snow
Corr-AdaptB-W sun, sky, sunset, clouds grass, cat, tiger, tree
Cos-AdaptB-W sun, sunset, sky, sea grass, tiger, cat, leaves
SvdCorr-AdaptB-W sun, clouds, sky, water grass, cat, tiger, water
SvdCos-AdaptB-W sunset, sun, sea, light tiger, grass, cat, bengal
True caption sea, sun, sky, waves cat, forest, grass, tiger

(white bars) gives more general performance than in Figure 1(a) and Figure 1(b) in Table 7. EM~-
baseline EM approach (black bar). B500-UW and SvdCorr-AdaptB-W both give

As an example of how well the captioning is per- "sky”, “cloud”, “sun” and “water” for the image in
formed, we show annotation words for the image Figure 1(a). EM-B500-UW gives "grass”, "rocks”,
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"sky” and "snow” for the image in Figure 1(b),
while SvdCorr—-AdaptB-W gives
“tiger”, and “water”. Although the captions do not

” 4

"grass”, "cat’,
match the truth perfectly, they describe the content
quite well. This indicates that the "truth” caption
may be just one of the many ways to describe the
image.

We summarize the results of our experiments as
follows:
*Method SvdCorr has the best

accuracy over the 10 testing sets.

captioning

«The uniqueness weighting has no effect on
method Cos (neither improve nor deteriorate).

* Methods Cos and SvdCorr have the same level
of performance as Cos after applying the uniqu-
eness weighting.

* Setting the size of the blob-token set is crucial
for achieving good captioning accuracy. All pro-
posed methods and the baseline method improve
their performance, when working on the AdaptB

data sets.

6. Discussions

The task of captioning images automatically is
difficult, due to factors ranging from the property
of the data set and the proposed framework for
solving this problem (in our case, we caption an
image via captioning the image’s blobs).

In our experiments, we found that the Corel data
set has several properties which introduce noise to
our process. The ideal situation is each term has
(blob~token),
"cat” is always a yellow blob, and "sky” is always

unique visual counterpart such as
a blue blob. However, in the data set, a general
term like "cat” appears with specific terms "tiger”
or “lion” which have different blobs (one with
strips, one without); and, "sky” is not always blue,
there are sky during sunset which is yellow or
orange.

Since our proposed methods caption an image
through captioning its constituent blob-tokens, the
quality of the blob-tokens in an image are critical.
In practice, we have more blob-tokens than the
captioning terms for each image. The extra blob-
tokens may correspond to small objects in the
background, or common objects such as ”"sky”,

” "

sea” which are captioned by human experts for
some images but are not captioned for some other
images which also contain the sky or sea. These
uncaptioned blob-tokens introduce noise to our
proposed methods and effect the performance.

For our experiments, we found that our proposed
methods achieve a 45% relative improvement over
the state-of-the-art EM approach. Why do the
proposed methods perform better? What else can
we do to do even better? The proposed methods
weigh different terms and blob-tokens according to
their power of discrimination (Definition 7). If a
term (blob-token) is common among many images,
it is likely to be mixed up with many different
blob-tokens (terms). As a result, it should get
lower weight, to constrain the possibility of our
estimate being messed up by it. In other words,
weighting suppresses the noise in the data matrix.
The ongoing work is to incorporate this idea of
weighting into the EM approach, which we suspect
may as well boost its performance.

Despite the success of our proposed methods, we
applied context-aware captioning to further improve
the performance, where the relation among the blobs
of an image are taking into consideration. For
example, if an image is a seascape scene which
contains three blob-tokens, with a blob-token sug-

" "

gesting the term “sea” and another suggesting
"sky”. Then, the term "table” is less likely to be
correct than the term “boat” for the third blob-
token (e.g., a wood-like blob-token which is shared
by both "table” and "boat”), even the term “table”
has greater likelihood than "boat” as indicated in the
term-likelihood vector. We model this inter-
blob-token relation by a term-term association table,
which is estimated based on the co- occurrence of
the terms in the annotated image set. It successfully
boosts the performance of the inferior ones of our
proposed methods to the same level of the best
proposed method. However, surprisingly, the pro-
posed context-aware captioning does not boost the
best proposed method further. This may due to the
inherent limitation of the correlation-based approach
which wuses only co-occurrence information. We
believe adding extra information or assumptions into

the process might help.
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7. Conclusions

In this paper, we studied the problem of auto—
matic image captioning. The problems we are
interested in are! “Given an image, give terms
which describe its content.” "Find images which
can be described by the word “tiger”. The tech-
nique developed will be useful for image retrieval
applications. Our main contribution is the proposed
correlation-based methods (Corr, Cos and SvdCorr)
that consistently outperform the state of the art
(EM) by up to a 45% relative improvement in
captioning accuracy. SvdCos shows the best perfor-
mance with recall and precision measurement that
is SvdCos is general to unseen images. Specifically,
in this paper,

»we do thorough experiments on large datasets of
different image content styles, and examine all
possible combinations of the proposed techniques
for improving captioning accuracy,

»the proposed uniqueness weighting scheme on
terms and blob-tokens boosts the captioning acc-
uracy,

* our improved, "adaptive” clustering (to form blob-
tokens) consistently leads to performance gains;

by SVD

structures between visual vocabulary and content

» dimension reduction reveals latent
vocabulary so that SvdCorr and SvdCos are
generalized for captioning of the unseen images.
The proposed techniques can be applied to other

domains. For example, given a set of microscopic

images with descriptions (e.g. the location of the
cells, the symptoms of some diseases shown in the
images) [29], the proposed methods can automa-
tically give medical suggestions given a microscopic

image of a new patient.
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