• Title/Summary/Keyword: 속성추출

Search Result 790, Processing Time 0.028 seconds

Extraction of Quality Attribute for Designing the S/W Architecture in Weapon Systems Embedded Software (무기체계 임베디드 S/W 아키텍처 설계를 위한 품질속성 추출)

  • Im, Jong-Sam;Yun, Hui-Byeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.268-271
    • /
    • 2006
  • 본 논문은 S/W 아키텍처 일반 모델 및 무기체계 S/W 특징을 분석하여 무기체계 S/W 품질속성을 추출한다. 이를 위해 먼저 4+1 View 모델, SEI 모델, Siemens 모델, RM-ODP 모델, Rational ADS 모델을 분석하고 무기체계 임베디드 S/W 특징을 분석하여 품질속성을 추출한다. 그런 다음 품질속성 측정매트릭스를 작성하여 품질속성 추출자료를 매핑하고 최종적으로 필수 이해당사자 관점에서 최종 평가하여 무기체계 S/W 품질속성을 추출한다.

  • PDF

Information Extraction Based on Property Patterns to Construct a Knowledgebase for Encyclopedia Person Domain (인물 백과사전 지식베이스 구축을 위한 속성패턴기반 정보추출)

  • 왕지현;김현진;장명길
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.793-795
    • /
    • 2004
  • 본 논문은 인물 도메인의 백과사전 지식베이스를 구축하기 위하여 백과사전 본문의 자연어 문장으로부터 인물 표제어의 특징을 잘 나타내는 속성 값을 인식하여 추출하는 방법에 관하여 기술한다. 속성은 인물 공통 및 세부 분야별로 총 52개의 속성을 정의하였고 이를 태그셋으로 정의하여 1천 문서의 백과사전 인물 속성태깅코퍼스를 구축하였다. 속성태깅코퍼스로부터 반자동으로 약 1천 8백여 개의 속성패턴을 추출하였고 백과사전 인물 표제어 24,848개에 대해 속성패턴을 적용하여 지식베이스를 구축하였다. 추출성능은 f-score 0.68의 결과를 나타내었다.

  • PDF

Feature Selection for Bio Named Entity Recognition from Biological Literature (바이오 문헌에서의 단백질, 유전자 객체 인식을 위한 특징 추출)

  • Kim, Tae-Wook;Li, Meijing;Tsendsuren, Munkhdalai;Ryu, Keun-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.166-168
    • /
    • 2012
  • 바이오 문헌으로부터의 의미 있는 객체 추출 및 상호작용 관계 추출은 수 많은 바이오 문헌으로부터 유용한 정보를 얻기 위한 필수적인 과정이다. 특히 문헌으로부터 유전자 또는 단백질 이름과 같은 바이오 객체를 정확하게 인지하는 것은 새로운 객체인식의 어려움과 객체를 찾기 위한 특징 패턴의 다양성으로 인해 도전적인 과제로 남아있다. 본 논문에서는 전처리 과정을 거친 문헌 데이터로부터 12개의 의미 있는 속성들을 선택하였다. 선택된 속성에 데이터마이닝 기법중 하나인 속성 추출 기법을 적용하여 객체를 분류하는데 있어 의미 있는 속성들을 추출하였다. 특징 추출 방법과 분류 알고리즘이 분류 성능에 미치는 영향을 평가하기 위해 각 방법의 정확도를 사용하여 분류 성능을 비교였으며, Gain Ratio Attribute Evaluation과 Symmetrical Uncertainty Attribute Evaluation 기법에 의해 추출된 속성이 가장 정확한 분류 성능을 보여주었다.

A Heuristic Method for Extracting True Opinion Targets (의도된 의견 대상의 추출을 위한 경험적 방법)

  • Soh, Yun-Kyu;Kim, Han-Woo;Jung, Sung-Hun;Kim, Dong-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.39-47
    • /
    • 2012
  • The opinion of user on a certain product is expressed in positive/negative sentiments for specific features of it. In some cases, they are expressed for a holistic part of homogeneous specific features, or expressed for product itself. Therefore, in the area of opinion mining, name of opinion features to be extracted are specific feature names, holonyms for theses specific features, and product names. However, when the opinion target is described with product name or holonym, sometimes it may not match feature name of opinion sentence to true opinion target intended by the reviewer. In this paper, we present a method to extract opinion targets from opinion sentences. Most importantly, we propose a method to extract true target from the feature names mismatched to a intended target. First, we extract candidate opinion pairs using dependency relation between words, and then select feature names frequently mismatched to opinion target. Each selected opinion feature name is replaced to a specific feature intended by the reviewer. Finally, in order to extract relevant opinion features from the whole candidate opinion pairs including modified opinion feature names, candidate opinion pairs are rearranged by the order of user's interest.

Development of Configuration Evaluator for Basic Software in AUTOSAR (AUTOSAR Basic Software 모듈의 설정을 평가하는 도구 개발)

  • Hong, Seung-An;Lim, Hyoung-Joo;Kwon, Gi-Hwon;Nam, Hyeon-Sun;Han, Tae-Man
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.299-302
    • /
    • 2010
  • 본 논문에서는 차량 전장용 소프트웨어의 일부인 Basic Software(BSW) 모듈 설정이 AUTOSAR 표준을 따르는 지를 평가하는 도구를 설명한다. 평가 도구는 크게 평가 속성 추출 부분과 속성 평가 부분으로 구분된다. 평가 속성 추출 부분에서는 AUTOSAR에서 제공하는 BSW 메타 모델로부터 평가 속성을 정의하는 데 사용되는 정보를 자동으로 추출하며 속성 평가 부분에서는 앞에서 추출한 정보를 이용하여 평가 속성을 정의한 후 사용자가 설정한 BSW 사용자 설정 모델에 대해서 평가를 자동으로 수행한다. 한편 평가 속성을 정의하는 데 BSW 메타 모델과 BSW 사용자 설정 모델이 이용된다. 이 두 모델은 XML 구조를 따르고 있으며 이 두 모델로부터 필요한 정보를 얻기 위해서는 XML 탐색이 요구된다. 이를 위해서 우리는 XML 질의어 중 하나인 XPath를 사용하였으며 BSW 메타 모델과 BSW 사용자 설정 모델로부터 평가에 필요한 정보를 얻을 수 있었다. 또한 평가 속성을 정의하는 데에도 XPath 를 사용하였으며 XPath로 정의한 평가 속성을 이용하여 우리는 BSW 사용자 설정 모델을 평가할 수 있었다.

Target extraction in Korean aspect-based sentiment analysis using stepwise feature of multi-task learning model (다중 작업 학습의 단계적 특징을 활용한 한국어 속성 기반 감성 분석에서의 대상 추출)

  • Ho-Min Park;Jae-Hoon Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.630-633
    • /
    • 2022
  • 속성기반 감성 분석은 텍스트 내에 존재하는 속성에 대해 세분화된 감성 분석을 수행하는 과제를 말한다. 세분화된 감성분석을 정확하게 수행하기 위해서는 텍스트에 존재하는 감성 표현과 그것이 수식하는 대상에 대한 정보가 반드시 필요하다. 그리고 순서대로 두 가지 정보는 이후 정보를 텍스트에서 추출하기 위해 중요한 단서가 된다. 따라서 본 논문에서는 KorBERT와 Bi-LSTM을 이용한 단계적 특징을 활용한 다중 작업 학습 모델을 사용하여 한국어 감성 분석 말뭉치의 감성 표현과 대상을 추출하는 작업을 수행하였다. 제안한 모델을 한국어 감성 분석 말뭉치로 학습 및 평가한 결과, 감성 표현 추출 작업의 출력을 추가적인 특성으로 전달하여 대상 추출 작업의 성능을 향상시킬 수 있음을 보였다.

  • PDF

An Extraction of Property of Ontology Instance Using Stratification of Domain Knowledge (도메인지식의 계층화를 통한 온톨로지 인스턴스의 속성정보 추출)

  • Chang, Moon-Soo;Kang, Sun-Mee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.291-296
    • /
    • 2007
  • The ontology has been used widely in recent years with its aim to accumulate knowledge that machine can comprehend. We believe that machine can manage and analyze information on its own using the ontology. In this paper, we propose an algorithm that allows us to extract properties of ontology instances from structured information already existing in web documents. In particular, by stratification of the domain knowledge that is composed of property information, we were able to make the algorithm better and improve the quality of extraction results. In our experiments with 20 thousands targeted documents, we were able to extract property information with 83% confidence.

Satellite Image Retrieval using Feature Vectors (속성벡터를 이용한 위성영상의 검색)

  • 박수영;최동훈;곽장호;김준철;이준환
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.735-738
    • /
    • 2001
  • 위성영상은 그 특성상 다중대역과 방대한 양의 영상 데이터로 이루어져 있으며, 방대한 양의 데이터에서 필요한 영상정보를 검색하기 위해서는 위성영상 검색에 적용 가능한 다중대역의 화소벡터, 질감 및 이들의 공간분포를 효과적으로 얻어낼 수 있는 속성을 추출하여 활용하는 것이 필요하다. 따라서 본 논문에서는 위성영상 검색에 유용하게 사용할 수 있는 속성으로 다중대역의 화소벡터 값과 질감 정보를 동시에 추출하면서 UV(Color Coherent Vector)의 개념을 적용하여 이들의 공간분포에 관한 정보를 포함한 새로운 속성을 정의하였고, SPOT 위성영상을 이용하여 국부적인 질의 영상의 속성벡터와 광범위한 지역의 위성영상에서 부분영상들의 속성벡터와의 유사성 비교를 통하여 원하는 부분영상을 검색하는 방법으로 그 성능을 평가하였다. 제안된 검색방식은 칼라와 질감 그리고 이들의 공간적인 분포 등을 개별적으로 추출하여 조합하는 과정이 필요 없으며, 특히 위성영상이나 특정 도메인에 종속되지 않기 때문에 다양한 내용기반 영상정보 검색에 효과적으로 이용될 수 있을 것으로 사료된다.

  • PDF

Unrelated question model with quantitative attribute by stratified double sampling (층화이중추출법에 의한 양적속성의 무관질문모형)

  • 이기성;홍기학
    • The Korean Journal of Applied Statistics
    • /
    • v.8 no.1
    • /
    • pp.27-38
    • /
    • 1995
  • In the surveys of sensitive issues of the population that is composed of several unknown-size stratum, we propose the unrelated question model with quantitative attribute by using stratified double sampling. And, we consider two types of sample allocations under the fixed cost, which are the proportional allocation, the optimum allocation. In efficiency, the proosed model is inferior to the unrelated question model with quantitative attribute by stratified sampling in case of the size of each stratum is known. But we find that efficiency of the proposed model is increased, when the selecting probability of sensitive question p is small and first stage sample size n' is large.

  • PDF

Extraction Association Rule between Attribute Values Using Hash Table (해시테이블을 이용한 속성값 간의 연관관계 추출)

  • Yang, Jong-Won;Lee, Sang-Hee;Lee, Dong-Joo;Yang, Jung-Yun;Lee, Sang-Goo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.220-222
    • /
    • 2005
  • 전자상거래의 발전은 필연적으로 상품 데이터베이스화를 수반하게 되었다. 이 상품 데이터베이스에 존재하는 각 상품들의 속성값들의 연관관계 추출은 검색- 유의어 추출 혹은 클러스터링등에 활용될 수 있다. 본 논문에서는 상품 속성값들의 연관관계 추출을 위하여 해쉬 테이블에 기반한 트리 형태 자료구조을 제안한다. 그리고 이 자료구조를 이용하여 상품 데이터에이스의 각 속성값 간의 연관관계를 threshold를 이용하여 선형 시간에 추출하는 알고리즘을 제시한다. 마지막으로, Support를 이용하여 트리의 탐색 공간을 줄이는 방식으로 최적화를 시키는 기법을 제시한다.

  • PDF