• Title/Summary/Keyword: 속도포텐셜

Search Result 127, Processing Time 0.021 seconds

Experimental Studies on Flow Characteristics and Thrust Vectoring of Controlled Axisymmetric Jets (원형분사제트 조절을 통한 유동특성 및 제트 벡터링의 효과 고찰)

  • 조형희;이창호;이영석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.33-45
    • /
    • 1997
  • Axisymmetric shear layers around a free jet is forced by co-flowing and counter-flowing secondary jets from/to an annular tube around the jet nozzle. The jet potential core extends far downstream with co-flowing secondary jets due to inhibited vortex developing and pairing. For counter-flowing cases, the axisymmetric shear layer around the jet transits from convective instability to absolute instability for velocity ratios R=1.3~l.65 for the uniform velocity jets. Consequently, the jet potential core length increases and the turbulence level in the jet core is reduced significantly. The jets are controlled better with extension collars attached to the outer nozzle exit because the annular secondary flow is guided well by the extension collars. For the vectoring of jet, the annular tube around the jet is divided in two parts and the only one part is used for suction. The half suction makes the different shear layer around the jet and vectoring the jet by Coanda effect. The vectoring and turbulent components are varied significantly by the suction ratio. The experiments are carried out to investigate the characteristics of forced free jets using flow visualization, velocity and turbulence measurements.

  • PDF

Effect of NaCl Stress on the Growth, Photosynthetic Rate and Mineral Uptake of Tomato, Red Pepper and Egg Plant in Pot Culture (NaCl 스트레스가 토마토, 고추, 가지의 생육, 광합성 속도 및 무기양분 흡수에 미치는 영향)

  • 강경희;권기범;최영하;김회태;이한철
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.133-138
    • /
    • 2002
  • This study was conducted to investigate the effece of NaCl concentrations on the growth, photosynthetic rate and mineral uptake of tomato, red pepper, and egg Plant in Pot culture. The growth such as plant height, plant fresh and dry weight, root fresh and dry weight and dried matter rate was decreased as NaCl concentrations were increased. Specially, the growth inhibition of tomato and egg plant was shown at over 40 mM NaCl, and that of red pepper at 20 mM NaCl. Yield of tomato and egg Plant was reduced at over 20 U NaCl, that of red pepper at over 10 mM NaCl. Yield reduction was affected by the number of fruit at low concentration and by mean weight and number of fruit at high concentration. Photosynthetic rate, water potential and stomatal conductance were decreased as NaCl concentrations were increased. The higher the concentration of NaCl, the lower the mineral uptake such as T-N, P, K, Ca and Mg, however, the higher the content of Na and Cl.

A Study on the Velocity Distribution of Gas Molecules by the Molecular Dynamics Method (분자동역학법에 의한 기체분자의 속도분포에 관한 연구)

  • 최순호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.441-450
    • /
    • 2004
  • The velocity distribution of gas molecules from the experimental results was confirmed as the same with the Maxwell-Boltzmann's theoretical results within the experimental error. This study is on the realization of the Maxwell-Boltzmann's velocity distribution of gas molecules by the molecular dynamics(MD) method. The Maxwell-Boltzmann's velocity distribution of gas molecules is extremely important to confirm the equilibrium state because the properties of a thermodynamic system shall be obtained from the system's equilibrium configuration in the MD method. This study is the first trial in the successive researches to calculate the properties of a thermodynamic system by the computer simulations. We confirmed that the maxwell-boltzmann's velocity distribution is developed in some transient time after starting a simulation and dependent on the size of a system. Also it is found that the velocity distribution has no relation with an initial configuration of gas molecules.

A free vibration analysis of sound-structure interaction plate having a small cut-out (부분적으로 열린 구조-음향 연성평판의 자유진동해석)

  • Oh, Jae-Eung;Rhee, Dong-Ick
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1666-1673
    • /
    • 1997
  • In order to investigate the characteristics of sound-structure interaction plate having a cut-out, we modeled a rectangular cavity and the flexible plate of the cavity. Because the particle velocity of air is the same as that of plate on the plate, we could easily redefine vibration equation using the velocity potential. We calculated the natural frequencies of plate using orthogonal polynomial functions which satisfy the boundary conditions in the Rayleigh-Ritz method. For the change of vibration characteristics, the effect of sound-structure interaction is more dominant than that of cut-out size.

A Free Vibration Analysis of Sound-Structure Interaction Plate (구조-음향 연성평판의 자유진동해석)

  • Lee, Dong-Ick;O, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2546-2554
    • /
    • 1996
  • In order to investigate the characteristics of sound-structure interaction problems, we modeled a rectangular cavity and the flexible wall of the cavity. Because the governing equations of motion are coupled through velocity terms, we could redefine them using the velocity potential. We calculated the natural frequencies of plate using orthogonal polynomial functions which satisfy the boundary conditions in the Rayleigh-Ritz Method. As the result, comparisons of theory and experiment show good agreement. and using orthogonal polynomial functions which satisfy the boundary conditions in the Rayleigh-Ritz method show useful method for sound-structure interaction problems too.

Design of 2-Dimensional Blade Section for Prescribed Velocity Distribution by a Vortex Based Panel Method (표면양력판 이론에 의한 요구 속도 분포를 갖는 2차원 날개 단면의 설계)

  • K.J. Cho;G.I. Choi;J.D. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.69-76
    • /
    • 1991
  • A design method based on the surface vorticity distribution is developed to generate a two-dimensional blade section for prescribed velocity distribution in potential flow. The boundary condition used to determine the strength of vorticity distribution requires that the surface of blade section should be a streamline of the resulting flow. In order to obtain the required final geometry of a two-dimensional blade section, an iterative procedure is used. A computer program is developed and several numerical results are presented.

  • PDF

마그네틱 베어링의 소개

  • 한동철
    • Journal of the KSME
    • /
    • v.30 no.5
    • /
    • pp.454-459
    • /
    • 1990
  • 마그네틱 베어링으로써 일반베어링의 사용할 때에 있었던 수많은 문제점들이 모두 해결되는 것 처럼 보인다. 여러 가지 특징 및 장점을 갖고 있으므로 가까운 장래에 회전기계 분야에 중요 하게 사용될 것으로 판단된다. 그러나 받아들여질 수 없는 몇 가지 요인들과 산업체에서 완전히 수용하기 이전에 좀 더 기술되어야 할 사항들은 다음과 같다. (가) 신뢰성 : 좀 더 연구할 필 요가 있다. (나) 안정성 : 동적 안정성의 측면에서 연구되어야 한다. (다) 축방향 베어링 : 앞 에서 설명한 바와 같이 원주속도의 한계치가 21,000m/min이고 따라서 그보다 직경이 작은 반경 방향 베어링의 한계 원주속도는 12,000m/min가 된다. (라) 전기적 장애 : 고정자와 절연된 회 전자 사이에는 방전이 일어나게 되고 이에 따라 포텐셜의 장애가 나타나게 된다. (마) 가격 : 크기가 작을 경우에는 일반 베어링에 비해 약 1.5배가량 비싸며 크기가 클 경우에는 약 80%가 된다. 그리고 운전비용은 일반 베어링에 비해 저렴하다.

  • PDF

Evaluation of Coconut Oil-based Emulsion Stability Using Tween-Span Type Nonionic Mixed Surfactant (Tween-Span계 비이온성 혼합계면활성제를 이용한 Coconut Oil 원료 유화액의 유화안정성 평가)

  • Hong, Seheum;Zhu, Kaiyang;Zuo, Chengliang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.453-459
    • /
    • 2019
  • In this study, the influence factors on the stability of the O/W (oil in water) emulsions prepared with coconut oil and the nonionic mixed surfactant (Tween 80-Span 80) were evaluated. The concentration and HLB value of the nonionic mixed surfactant, and the degree of agitation were used as manufacture factors. The stability of prepared O/W emulsions were measured with the mean droplet size, zeta-potential, emulsion stability index (ESI), and thermal instability index (TII). The mean droplet size of the prepared O/W emulsions was from 100 to 200 nm. As the concentration of mixed surfactant and the homogenization speed increased, the droplet sizes decreased, while the zeta-potential values increased. The effect of HLB values increased in the order of 6.0, 10.0 and 8.0, and at the HLB value of 8 the smallest mean droplet size as 120 nm was obtained whereas the largest value of the zeta-potential between 10 and 60 mV. From the results of ESI and TII, the stability of prepared O/W emulsions increased in order of 6.0, 10.0 and 8.0 of HLB values, and ESI and TII values were above 80% and below 20% respectively at HLB value of 8.0.

Thermodynamic Evaluations of Cesium Capturing Reaction in Ceramic Microcell UO2 Pellet for Accident-tolerant Fuel (사고저항성 핵연료용 세라믹 미소셀 UO2 소결체의 Cs 포집반응에 대한 열역학적 평가)

  • Jeon, Sang-Chae;Kim, Keon Sik;Kim, Dong-Joo;Kim, Dong Seok;Kim, Jong Hun;Yoon, Jihae;Yang, Jae Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.37-46
    • /
    • 2019
  • As candidates for accident-tolerant fuels, ceramic microcell fuels, which are distinguished by their peculiar microstructures, are being developed; these fuels have $UO_2$ grains surrounded by cell walls. They contribute to nuclear fuel safety by retention of fission products within the $UO_2$ pellet, reducing rod pressure and incidence of SCC failure. Cesium, a hazardous fission product in terms of amount and radioactivity, can be captured by chemical reactions with ceramic cell materials. The capture-ability of cesium therefore depends on the thermodynamics of the capturing reaction. Conversely, compositional design of cell materials should be based on thermodynamic predictions. This study proposes thermodynamic calculations to evaluate the cesium capture-ability of three ceramic microcell compositions: Si-Ti-O, Si-Cr-O and Si-Al-O. Prior to the calculations, the chemical and physical states of the cesium and the cell materials were defined. Then, the reactivity was evaluated by calculating the cesium potential (${\Delta}G_{Cs}$) and oxygen potential (${\Delta}G_{O_2}$) under simulated LWR circumstances of normal operation. Based on the results, cesium capture is expected to be spontaneous in all cell compositions, providing a basis for the compositional design of ceramic microcell fuels as well as a facile way for evaluating cesium capture.

Study on Rate Dependent Fracture Behavior of Structures; Application to Brittle Materials Using Molecular Dynamics (구조물의 속도 의존적 파괴 특성에 대한 연구; 입자동역학을 이용한 취성재료에의 적용)

  • Kim, Kunhwi;Lim, Jihoon;Llim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.529-536
    • /
    • 2008
  • The failure behavior of structures is changed under different loading rates, which might arise from the rate dependency of materials. This phenomenon has been focused in the engineering fields. However, the failure mechanism is not fully understood yet, so that it is hard to be implemented in numerical simulations. In this study, the numerical experiments to a brittle material are simulated by the Molecular Dynamics (MD) for understanding the rate dependent failure behavior. The material specimen with a notch is modeled for the compact tension test simulation. Lennard-Jones potential is used to describe the properties of a brittle material. Several dynamic failure features under 6 different loading rates are achieved from the numerical experiments, where remarkable characteristics such as crack roughness, crack recession/arrest, and crack branching are observed during the crack propagation. These observations are interpreted by the energy inflow-consumption rates. This study will provides insight about the dynamic failure mechanism under different loading rates. In addition, the applicability of the MD to the macroscopic mechanics is estimated by simulating the previous experimental research.