• Title/Summary/Keyword: 소형 항공기

Search Result 269, Processing Time 0.026 seconds

Analysis for Unmanned Aerial Vehicle Airworthiness Certification Criteria (소형 무인항공기 감항인증 기술기준 및 에너지 충돌기법 분석 연구)

  • Lim, Jun-Wan;Kim, Yong-Rae;Choi, Byung-Chul;Ko, Joon-Soo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.4
    • /
    • pp.65-74
    • /
    • 2014
  • Unmanned aerial vehicles(UAVs) refer to the aircraft which carries no human pilot and is operated under remote control or in autonomous operational mode. As the UAVs can perform the dull, dangerous and difficult missions, various kinds of UAVs with different sizes and weights have been developed and operated for both civil and military application. As the avionics and communication technology related to the UAVs are matured, the demand for the UAVs is dramatically increased. Therefore, It is important to develope airworthiness process and regulations of the UAVs to minimize related risk to the man and environment. This paper describes related regulations and classification of the small UAVs for different international airworthiness authorities. The analysis of the CS-LURS verses Stanag 4702 and Stanag 4703 can provide guidelines for the generation of the airworthiness certification criteria for the small UAVs in civil sector. This paper conducted kinetic impact energy analysis of the loss of the small UAVs control scenarios and of the very small UAVs under 66 joules. Based on the analysis, the energy impact analysis can be considered before the design certification approval for the small UAVs.

Design and Performance Analysis of an Off-Axis Three-Mirror Telescope for Remote Sensing of Coastal Water (연안 원격탐사를 위한 비축 삼반사경 설계와 성능 분석)

  • Oh, Eunsong;Kang, Hyukmo;Hyun, Sangwon;Kim, Geon-Hee;Park, YoungJe;Choi, Jong-Kuk;Kim, Sug-Whan
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.3
    • /
    • pp.155-161
    • /
    • 2015
  • We report the design and performance analysis of an off-axis three-mirror telescope as the fore optics for a new hyperspectral sensor aboard a small unmanned aerial vehicle (UAV), for low-altitude coastal remote sensing. The sensor needs to have at least 4 cm of spatial resolution at an operating altitude of 500 m, $4^{\circ}$ field of view (FOV), and a signal to noise ratio (SNR) of 100 at 660 nm. For these performance requirements, the sensor's optical design has an entrance pupil diameter of 70 mm and an F-ratio of 5.0. The fore optics is a three-mirror system, including aspheric primary and secondary mirrors. The optical performance is expected to reach $1/15{\lambda}$ in RMS wavefront error and 0.75 in MTF value at 660 nm. Considering the manufacturing and assembling phase, we determined the alignment compensation due to the tertiary mirror from the sensitivity, and derived the tilt-tolerance range to be 0.17 mrad. The off-axis three-mirror telescope, which has better performance than the fore optics of other hyperspectral sensors and is fitted for a small UAV, will contribute to ocean remote-sensing research.

Analysis of Low Velocity Impact Damage and Compressive Strength After Impact for Laminated Composites (복합재 구조물의 저속 충격 손상 및 충격 후 압축 강도 해석)

  • Suh, Young-W.;Woo, Kyeong-Sik;Choi, Ik-Hyun;Kim, Keun-Taek;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.183-192
    • /
    • 2011
  • The demand for weight saving and high performance of aircraft require the more uses of composite materials. However the complicate behaviors and various failure characteristics restrict usage of composite materials. Low-velocity impact damage is a major concern in the design of structures made of composite materials, because impact damage is hidden and cannot be detected by visual inspection. Especially, the reduction on compressive strength after impact is influenced by the ply delaminations introduced as damage by impact event. In this research, the numerical analysis was performed to investigate impact damage and compressive strength after impact. It was found that impact force history and compressive strength after impact calculated by the numerical analysis were compared and shown a good agreement with experimental results.

A Study on Noise Certification Evaluation of Hybrid VTOL UAV by Wind Tunnel Test and Flight Test (풍동실험 및 비행시험을 통한 복합형 VTOL 무인기 소음인증 평가에 대한 연구)

  • Ryi, Jaeha;Choi, Jong-Soo
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.spc
    • /
    • pp.39-48
    • /
    • 2020
  • This paper deals with the process of estimating the environmental noise generated from the actual flying aircraft using the noise measurement results obtained through the wind tunnel test and verifying it through flight tests. In order to evaluate the environmental noise of an aircraft, noise tests and evaluations are generally conducted according to the procedures prescribed by the International Civil Aviation Organization (ICAO). In this paper, we introduced environmental noise evaluation method that can be applied to composite both fixed-wing aircraft and multi-copter, and introduced the evaluation method by experiment. This paper introduces the process of simulating the noise test results measured in the wind tunnel test using real flight test results. In addition, in consideration of flight operating conditions and noise measurement methods proposed by the ICAO, the effective perceived noise level (EPNL) was predicted by performing both the wind tunnel test and the aircraft flight test.

Vision-based Target Tracking for UAV and Relative Depth Estimation using Optical Flow (무인 항공기의 영상기반 목표물 추적과 광류를 이용한 상대깊이 추정)

  • Jo, Seon-Yeong;Kim, Jong-Hun;Kim, Jung-Ho;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.267-274
    • /
    • 2009
  • Recently, UAVs (Unmanned Aerial Vehicles) are expected much as the Unmanned Systems for various missions. These missions are often based on the Vision System. Especially, missions such as surveillance and pursuit have a process which is carried on through the transmitted vision data from the UAV. In case of small UAVs, monocular vision is often used to consider weights and expenses. Research of missions performance using the monocular vision is continued but, actually, ground and target model have difference in distance from the UAV. So, 3D distance measurement is still incorrect. In this study, Mean-Shift Algorithm, Optical Flow and Subspace Method are posed to estimate the relative depth. Mean-Shift Algorithm is used for target tracking and determining Region of Interest (ROI). Optical Flow includes image motion information using pixel intensity. After that, Subspace Method computes the translation and rotation of image and estimates the relative depth. Finally, we present the results of this study using images obtained from the UAV experiments.

Design of Navigation System for Low Cost Unmanned Aerial Vehicle (저가형 무인항공기 운용을 위한 항법시스템 설계)

  • Lee, Jang-Ho;Kim, Sung-Pil;Park, Mu-Hyeok;Ahn, Iee-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • This paper describes the design of navigation system for an unmanned target drone which is operated by Korean army as for anti-air gun shooting training. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated nowdays use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed by integrating combining power module, switching module, monitoring module and RC receiver as an one module. The performance of navigation for low cost unmanned aerial vehicle, unmanned target drone as our test bed in this paper is verified by both Hardware in the loop simulation(HILS) to test performance of GPS as GPS output frequency high and results of flight test.

  • PDF

Low-cost Fiber Bragg Grating Interrogator Design for Unmanned Aircraft (무인 항공기를 위한 저가형 FBG 인터로게이터 설계)

  • Hong, Jae-Beom;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.465-470
    • /
    • 2020
  • Complex materials are widely used in aviation industries where lightweighting is essential because they have lighter properties than metals. However, composite materials can cause defects such as internal void formation, poor adhesive mixing, and non-adhesive parts during the production process, and there is a risk of micro-cracking and interlayer separation due to low energy impact. Therefore, a structural damage test is essential. As a result, structural integrity monitoring using FBG is drawing attention. Compared to conventional electrical sensors, FBG has the advantage of being more corrosion-resistant and multiplexed without being affected by electrical noise. However, interloggers measuring FBG are expensive and have a large disadvantage because they are made on the premise of measuring large structures. In this paper, low-cost interloggers were designed for use in unmanned or small aircraft using optical switche, WDM filter, and LTFs, and compared to conventional high-priced interrogator.

Compliance Validation Method of UAM Composite Part Manufacturing System based on Composite Material Qualification System (복합재료인증체계를 통한 UAM 용 복합재료 부분품 인증 적합성 확인 방안)

  • Cho, Sung-In;Yang, Yong Man;Jung, Seok-Ho;Kim, Je-Jun
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.35-41
    • /
    • 2022
  • UAM (Urban Air Mobility) is a new safe, secure, and more sustainable air transportation system for passengers and cargo in urban environments. Commercial operations of UAM are expected to start in 2025. Since production rates of UAM are expected to be closer to cars than conventional aircraft, the airworthiness methodology for UAM must be prepared for mass production. Composite materials are expected to be mainly used for UAM structures to reduce weight. In this paper, the composite material qualification method was derived and the materials were applied for small aircraft application. It is expected to reduce the airworthiness certification time by applying composite material qualification system and its database.

드론 핵심 기술 및 향후 과제

  • Yun, Gwang-Jun
    • The Optical Journal
    • /
    • s.158
    • /
    • pp.52-54
    • /
    • 2015
  • 최근 무인항공기를 지칭하는 드론 관련 산업이 미래를 이끌 신산업으로 부상하고 있다. 드론은 20세기 초에 군사용으로 개발되어 정찰 감시 및 폭격과 같은 군사임무를 수행하여 왔으나 최근 들어 독일 DHL, 아마존, 구글 등과 같은 다국적 기업들이 상업적 용도로 활용을 선언하며 연구 개발에 뛰어 들면서 그 시장이 예상보다 빨리 커지고 있다. 미국 틸 그룹의 보고서에 의하면 2013년 세계 드론 시장의 규모는 66억 달러였고 그 중 군사용이 90% 이상을 차지하고 있으나 향후 민수용 시장 비율이 상당히 커질 것으로 예상된다. 2022년에는 114억 달러 규모로 커질 것으로 예상하고 있다. 현재 민수용으로 사진 촬영용 소형 드론으로부터 정밀농업, 인프라 관리, 택배 및 화물 수송 등으로 운용 범위를 확대하고 있다. 국내 드론 산업은 군수 위주로 시작되어 세계 7위권의 기술력을 확보한 것으로 평가되고 있다. 무인기 분야의 연구개발은 국방과학연구소와 한국항공우주연구원 등 정부출연연구소가 주도하는 가운데, 한국항공우주산업, 대한 항공이 주로 체계종합(System Integrator) 및 비행체 개발을 담당하고 LIG넥스원, 삼성탈레스, 삼성테크윈 등의 대기업을 포함한 중소업체들이 부체계 기술을 개발하고 있다. 최근 소형 드론을 중심으로 시장형성이 가시화되는 민수 시장에서는 가격, 기술 경쟁력의 열위에 있어, 국내 산업 경쟁력 확보와 미래 시장을 선도할 핵심 제품 개발이 시급한 실정이다. 또한 무인기의 비행체 국산화는 상당한 수준으로 진행되었으나, 광학(EO) 적외선(IR) 카메라 등 핵심 부가가치를 구성하는 탑재 임무장비의 경우 원천기술의 부족으로 해외에 의존하고 있다.

  • PDF

Correction of Aircraft Empty Weight CG due to LRU Modification (구성품 변경에 따른 항공기 공허중량 무게중심 수정 및 검증)

  • Lee, Jin-Won;Kwon, Na-Eun;Kim, Ji-Hong;Park, Jae Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.551-557
    • /
    • 2022
  • LRU (Line Replacement Unit) modifications are often required for military aircraft due to aging. Recently, LRU modifications were proceeded for KA-O (Armed Airborne Controller) by replacing the ejection seat and adding avionic equipment, which made the aircraft's operational CG (Center of Gravity) on fuel consumption curve become out of the range of the specification requested. The off-ranged CG should be corrected by introducing an appropriate method. This study proposes a procedure for revising and verifying the empty weight CG altered due to LRU modification for small military aircraft (e.g., KA-O). In the proposed method, first, the change of empty weight CG of KA-O due to the LRU modifications is comprehensively examined. Then, several ballast masses are added to the engine mount strut to restore the empty weight CG on the fuel consumption curve to a safe operational range. The installations are verified via stress and fatigue analysis for various operating conditions. Considering that open information is not very available for the revision of empty weight CG, this study is valuable because it presents an established procedure for correcting and verifying empty weight CG during aircraft modification.