• Title/Summary/Keyword: 소형 항공기

Search Result 269, Processing Time 0.024 seconds

Design and Optimization Study on the Multi Flight Modes Canard Rotor/Wing Aircraft with Development of Sizing Program (사이징 프로그램 개발을 통한 다중 비행 모드 Canard Rotor/Wing 항공기의 형상 최적설계)

  • Kim, Jong-Hwan;Kim, Min-Ji;Lee, Jae-Woo;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.22-31
    • /
    • 2005
  • A design study was conducted for a new concept aircraft(Canard Rotor/Wing: CRW) that has the capability of dual mode flight, a rotorcraft and a fixed wing mode. The CRW can show a vertical take off/landing and a high speed/efficiency cruise performance simultaneously. It is not surprising to develop a new sizing code for this class of aircraft because conventional sizing codes developed solely for either the rotary wing or the fixed wing aircraft are not adequate to design a dual mode aircraft operated both by the rotary wing through tip jet effux and the fixed wing lift. Thus, a new design code was developed based on the conventional sizing code by adding some features including rotor performance, duct flow, and engine flow analysis, hence could eventually predict the performance of reaction driven rotor, the flight performance and the flight characteristics. The various design parameters were investigated to find their influences on the flight performance then, a small UAV(Unmanned Aircraft Vehicle) of 1500 lbs class was optimally designed to have minimum weight using the developed sizing code.

Development of Flight Antennas for Micro Aerial Vehicle (소형 무인항공기 탑재형 안테나 개발)

  • Kim Duck-Hwan;Lee Kyu-Hwan;Kim Young-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.4 s.19
    • /
    • pp.20-25
    • /
    • 2004
  • The existing antenna that equipped with Micro Aerial Vehicle, microstrip antenna only can send and receive image signal because of limited bandwidth. But, proposed antenna that equipped with Micro Aerial Vehicle flight introduces tapered type patch antenna, also improves bandwidth then can transfer present location, altitude, movement speed. Furthermore, as a result of introduce stacked type, it transfers more quality of image signal, and represents most suitable performance in Korean peninsula that has many mountain peaks. In this paper, to transmit and receive the wideband signals with a antenna system, the wideband microstrip antenna is proposed and designed. This antenna operates at 2.4GHz. In this thesis, the resonance frequency of 2.4GHz and the reflective loss of the antenna of -22dB were calculated by measuring the fabricated Tapered Microstrip Patch Antenna which was designed with the resonance of 2.4GHz. The calculated gain and efficiency of antenna were 6.7dB and $60\%$ respectively. The characteristic of the bandwidth shows with $50\~60MHz$ which is $6.02\%$ at the basis of -l5dB reflective loss. The experimental results can be used in the characteristic of the resonators and this antenna produces a greatly enhanced bandwidth.

Estimation of Fatigue Integrity for Small Aircraft Engine Mount Strut (소형 항공기 엔진 마운트 구조물의 피로 건전성 평가)

  • Lee, Mu-Hyoung;Park, Ill-Kyoung;Kim, Sung-Joon;Ahn, Seok-Min
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.58-66
    • /
    • 2011
  • The estimation of fatigue integrity is very important for aerospace structures such as engine mount strut. The reason is that the fatigue integrity is essential analysis process to establish the structural stability in aerospace field. Therefore, in this paper, the process of fatigue analysis and test was performed for engine mount strut to prove the structural fatigue integrity. First of all, the fatigue load spectrum is constructed by considering the small aircraft operating condition. Fatigue analysis is done for the cluster near the welding zone which may have F.C.L.(fracture critical location). The fatigue life of engine mount strut was estimated by the Miner's rule which is the damage summation method. Finally, Fatigue test is performed to verify the fatigue integrity. The estimation process of fatigue integrity for engine mount strut of small aircraft may help the design.

Flight control of a small unmanned aerial vehicle using a dynamic compensator (동적 보상기를 이용한 소형 무인항공기 비행 제어)

  • Kim, Heui-Joo;Kim, Jea-Wook;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.571-577
    • /
    • 2012
  • In this paper, we design a flight controller using a dynamic compensator for a small unmanned aerial vehicle. The proposed method ensures flight stability during altitude holding and waypoints passing by improving the transient response and steady state error. The control system consists of dual feedback loops with an inner loop and a outer loop. The inner loop has a PD controller to improves the transient response and the outer loop has a dynamic compensator to reduce overshoot in the transient response and improve the steady state error. The performance of the proposed method is evaluated by flight test on a small UAV.

Design for Spin/Stall Recovery Parachute System of Turbo-prop Airplane (터보프롭 항공기의 스핀/실속 회복장치 설계)

  • Lee, Dong-Hun;Nho, Byung-Chan;Kang, Myung-Kag;Kang, Gyeong-Woo;Lee, Ju-Ha
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.726-736
    • /
    • 2012
  • This paper deals with Spin/Stall Recovery Parachute System from design to ground taxiing stage which would be deployed on the high speed taxi of turbo-prop airplane. In detail design phase, design parameters- riser length, parachute type, size, porosity, parachute canopy filling time, and deployment method- were considered based on the analytical disciplines such as aerodynamics, structures, and stability & control. Before the installation of Spin/Stall Recovery System of turbo-prop airplane, all control functions of this system were validated by the SBTB(System Breakout Test Box) in the laboratory. SBTB was used to confirm if it can detect faults, and simulate the firing of pyrotechnic devices that control the deployment and jettison of it. Once confirmed normal operation, deployment of parachute on the high speed taxiing were performed.

Comparative Study of Engine Type Certification Criteria (항공기 엔진 민수 인증 기준의 비교 분석 연구)

  • Kim, Jae-Hwan;Jung, Yong Wun;Moon, Gyeong Chan;Park, Sooyoul;Kim, Myeonghyo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.201-204
    • /
    • 2017
  • An comparative analysis between two engine type certification specifications which are FAR Part 33 and EASA CS-E has been performed to provide fundamental information for validity assessment of civil certified engine when it is installed to a military rotorcraft. The analysis result has been used to build a traceability information between CS-E and MIL-HDBK-516C by which the substantiation data for engine type certification can be used as parts of aircraft propulsion system airworthiness substantiation.

  • PDF

A Study on a Small Canard Aircraft Flight Characteristics through Flight Test (비행시험을 통한 소형 커나드항공기의 비행 특성 연구)

  • Kim, Eung-Tai;Seong, Kie-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.31-38
    • /
    • 2002
  • This paper presents the analysis of the flight test data measured by the sensors installed on a four-seat canard aircraft. The inherent stall proof characteristics of canard aircraft was verified from the stall test. The dihedral effect, adverse yaw and roll control power were examined and the neutral point that determines the longitudinal stability of the aircraft was investigated. The dynamic characteristics such as dutch roll mode were also examined. Without relying on the parameter identification method, the aerodynamic derivatives or the relations between the aerodynamic derivatives were obtained by analyzing the steady state flight data.

EKF Based SOH State Estimation Algorithm for UAV Li-Po Battery Pack (무인항공기 리튬폴리머 배터리팩용 EKF 기반 SOH 상태추정 알고리즘)

  • Jung, Sunghun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.6
    • /
    • pp.237-243
    • /
    • 2017
  • Ignorance of battery pack life could bring unexpected UAV crashes and so the SOH estimation became a next important factor to the SOC estimation. In contrast to the EV applications, the small UAV could not carry heavy and complex BMS and so it is required to apply a simple, light, cheap, but powerful BMS to prevent any accident. In this paper, we show two SOH estimation methods, using internal resistance and using $SOC_I$ and $SOC_V$ with CF. Results show that the SOH becomes about 92% after 30 number of discharging cycles.

A Study on Slots to Improve the Shield Effects of a High Frequency RF module for Aircraft (항공기용 고주파 칩셋의 차폐율 개선을 위한 개구면 형상 연구)

  • Seung-Han, Kim;Sang Hoon, Park
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.18-23
    • /
    • 2022
  • This paper examines the electromagnetic shielding structure of ultra-high frequency (UHF) RF modules used in aircraft. Advances in electrical and electronic technologies have increased the need for electronic equipment in aircraft. High-frequency wireless devices have become integrated circuits in the form of UHF integrated circuits to support a wide range of frequencies and miniaturisation. To ensure the functionality and performance of these integrated devices in aviation, shielding is necessary to prevent unexpected electromagnetic interference, which could be detrimental to aircraft safety. A shield structure was designed to protect the RF chipset from malfunctioning, and the shielding effectiveness was improved through the application of various geometric shapes.

Study on Estimation of Design Factors for 6 Degree-of-Freedom Simulator (6자유도 시뮬레이터의 설계인자 추정에 관한 연구)

  • Yoon, Jun-Seok;Song, Woo-Jin;Byun, Young-Seop;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.447-456
    • /
    • 2010
  • The application of a reliable motion simulator can contribute effectively in the evaluation of the performance of a vehicle platform in the development stage of a small unmanned aerial vehicle (UAV). Therefore, the research on a reliable motion simulator can accelerate the development of UAV and decrease the relevant cost. In this paper, the design factors considered in the preliminary design stage of a 6 degree-of freedom motion simulator are defined and the motion range of the simulator is described on the basis of these design factors. The length, acceleration, and the required thrust of actuators with respect to the motion simulator under development are also predicted. The motion range can be increased and a suitable actuator can be selected and produced by applying these results in the manufacturing process of the motion simulator. Thus, the reliability of the motion simulators can be achieved during the actual design operation of the UAV.