• Title/Summary/Keyword: 소형셀 네트워크

Search Result 37, Processing Time 0.023 seconds

Performance Analysis of STTC-based Dual Virtual Cell System under The Overlay Convergent Networks of Cognitive Networking (중첩 융합 네트워크 환경에서 STTC기반 이중 셀 시스템의 성능분석)

  • Kwon, Eun-Mi;Kim, Jeong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.528-534
    • /
    • 2012
  • In order to achieve high capacity and reliable link quality of the overlay convergent networks with the cognitive networking based on the advanced capability of the mobile terminal, a Distributed Wireless Communication System (DWCS) can provide the capability of enhancing the link quality. This paper has considered virtual cell: the Dual Virtual Cell (DVC), and also proposes DVC employment strategy based on radio resource monitering. The considered system constructs DVC for multi-user high-rate data transmission, and the DWCS system exploits space-time trellis codes i.e., STTC to improve a spectral efficiency. The effects of imperfect CSI(channel state information) on the system performance has also been investigated.

Technical Trends of Fixed Wireless Link for 5G Mobile Communications (5G 이동통신용 고정 무선링크 기술동향)

  • Kang, M.S.;Kim, B.S.;Kim, K.S.;Hong, J.Y.;Lee, Y.S.;Kim, J.B.;Byun, W.J.
    • Electronics and Telecommunications Trends
    • /
    • v.30 no.3
    • /
    • pp.95-104
    • /
    • 2015
  • 모바일 빅뱅이라고 불리는 모바일 데이터 전송량의 폭발적인 증가로 촉발된 5G 이동통신에 대한 논의는 현재 ITU-R(International Telecommunication Union-Radio-communication)에서 5G 이동통신 네트워크 서비스 비전에 대한 직업을 진행 중이다. 5G 이동통신의 면적당 전송용량을 만족하기 위해서는 소형셀 형태로의 진화는 필연적이다. 본고에서는 5G 이동통신망 구성의 한 축을 담당할 것으로 예상되는 고정 무선링크 기술에 대한 개발동향을 소개한다. 고정 무선링크에 대한 사용 용도, 시장전망 그리고 현재 고정 무선링크 용도로 사용이 가능한 주파수 분배 현황에 대하여 살펴보고, 최근 고정 무선링크와 관련하여 시스템에 적용 중인 기술들과 새롭게 연구 중인 LOS(Light of Sight)-MIMO(Multi-Input Multi-Output), OAM(Orbital Angular Momentum) 등 관련 기술에 대한 개발동향을 소개한다.

  • PDF

DNN-Based Dynamic Cell Selection and Transmit Power Allocation Scheme for Energy Efficiency Heterogeneous Mobile Communication Networks (이기종 이동통신 네트워크에서 에너지 효율화를 위한 DNN 기반 동적 셀 선택과 송신 전력 할당 기법)

  • Kim, Donghyeon;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1517-1524
    • /
    • 2022
  • In this paper, we consider a heterogeneous network (HetNet) consisting of one macro base station and multiple small base stations, and assume the coordinated multi-point transmission between the base stations. In addition, we assume that the channel between the base station and the user consists of path loss and Rayleigh fading. Under these assumptions, we present the energy efficiency (EE) achievable by the user for a given base station and we formulate an optimization problem of dynamic cell selection and transmit power allocation to maximize the total EE of the HetNet. In this paper, we propose an unsupervised deep learning method to solve the optimization problem. The proposed deep learning-based scheme can provide high EE while having low complexity compared to the conventional iterative convergence methods. Through the simulation, we show that the proposed dynamic cell selection scheme provides higher EE performance than the maximum signal-to-interference-plus-noise ratio scheme and the Lagrangian dual decomposition scheme, and the proposed transmit power allocation scheme provides the similar performance to the trust region interior point method which can achieve the maximum EE.

Characteristics of Wireless Distributed Communication System under the Overlay Convergent Networks (중첩 융합 네트워크에서 분산 무선 통신 시스템의 특성)

  • Cheon, EunJi;Kim, Jeong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.986-992
    • /
    • 2012
  • In order to support quickly increasing mobile traffic and deal with various types of users of wireless mobile systems under overlay convergent cognitive networking environments, it is highly required to improve the performance and the capability of the wireless access networks. With distributed antennas and distributed processors, it is possible for mobile terminals (MTs) to monitor interference and control system effectively to minimize mutual interference among users and cells. Virtual cell changes as the MT moves or the environment changes, so no handoff is needed in connections with base station hotelling. In this paper, the characteristics of wireless distributed systems under the overlay convergent networks will be investigated.

An Empirical Study on Machine Learning based Smart Device Lithium-Ion Cells Capacity Estimation (머신러닝 기반 스마트 단말기 Lithium-Ion Cell의 잔량 추정 방법의 실증적 연구)

  • Jang, SungJin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.797-802
    • /
    • 2020
  • Over the past few years, smart devices, including smartphones, have been continuously required by users based on portability. The performance is improving. Ubiquitous computing environment and sensor network are also improved. Due to various network connection technologies, mobile terminals are widely used. Smart terminals need technology to make energy monitoring more detailed for more stable operation during use. The smart terminal which is light in small size generates the power shortage problem due to the various multimedia task among the terminal operation. Various estimation hardwares have been developed to prevent such situation in advance and to operate stable terminals. However, the method and performance of estimating the remaining amount are not relatively good. In this paper, we propose a method for estimating the remaining amount of smart terminals. The Capacity Estimation of lithium ion cells for stable operation was estimated based on machine learning. Learning the characteristics of lithium ion cells in use, not the existing hardware estimation method, through a map learning algorithm using machine learning technique The optimized results are estimated and applied.

Downlink System Level Simulator for Enhanced Inter-Cell Interference Coordination in Maritime Heterogeneous Networks (해양 이종 네트워크 환경에서 인접 셀 간섭 제어를 고려한 하향링크 시스템 레벨 시뮬레이터 개발)

  • Hwang, Taemin;Nam, Yujin;Jeong, Min-A;So, Jaewoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1424-1432
    • /
    • 2015
  • As the wireless communication technologies are being studied for application to maritime communication networks in a fusion of marine industries and IT technology, interference coordination techniques have been studied in the maritime heterogeneous networks. In this paper, we develop a simulator for measuring, verifying and evaluating performance of a maritime heterogeneous network. Unlike other previous simulators, the developed simulator applies enhanced inter-cell interference coordination (eICIC) that are being introduced in the 3GPP Release 10 for mitigating the cross-tier interference between ships. Furthermore, we investigate the effects of almost blank subframes (ABS) and cell range expansion (CRE) on the throughput of small cells in maritime heterogeneous networks by using the developed simulator.

Low Power Cryptographic Design based on Circuit Size Reduction (회로 크기 축소를 기반으로 하는 저 전력 암호 설계)

  • You, Young-Gap;Kim, Seung-Youl;Kim, Yong-Dae;Park, Jin-Sub
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.92-99
    • /
    • 2007
  • This paper presented a low power design of a 32bit block cypher processor reduced from the original 128bit architecture. The primary purpose of this research is to evaluate physical implementation results rather than theoretical aspects. The data path and diffusion function of the processor were reduced to accommodate the smaller hardware size. As a running example demonstrating the design approach, we employed a modified ARIA algorithm having four S-boxes. The proposed 32bit ARIA processor comprises 13,893 gates which is 68.25% smaller than the original 128bit structure. The design was synthesized and verified based on the standard cell library of the MagnaChip's 0.35um CMOS Process. A transistor level power simulation shows that the power consumption of the proposed processor reduced to 61.4mW, which is 9.7% of the original 128bit design. The low power design of the block cypher Processor would be essential for improving security of battery-less wireless sensor networks or RFID.