• Title/Summary/Keyword: 소형무인비행장치

Search Result 29, Processing Time 0.043 seconds

The Concrete Classification and Registration for sUAS (현행 법률상 비사업용 소형무인비행장치 신고 및 식별표시의무 강화 규정 도입의 필요성)

  • Kim, Sung-Mi
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.34 no.1
    • /
    • pp.125-157
    • /
    • 2019
  • Technological advancement and demand of sUAS (small Unmanned Aircraft System)are rapidly growing, which makes the current legal system unable to follow. Currently, Aviation Security Act and its subordinate law exclude the registration and certification for non-commercial purpose sUAS weighing less than 12kg. Despite this sUAS being the most popular model for consumer, there is no way to regulate them legally. When there is sUAS crash accident, the operator legally responsible for the occurrence damage cannot be identified. It has been an issue for a long time with the concrete classification and registration of sUAS, but it has not been introduced yet. It is obvious that damages caused by sUAS will be transferred not only to operators but also to third parties. Discussions on liability insurance for these sUAS are actively being held. But first, it is necessary to identify who will be responsible for the damage caused by the sUAS. In other words, even with the liability system established, without clarified operator the damage occurred cannot determine who is responsible. According to the cases of America and Germany, they have enforced the law of registration and identification obligated to 200g or 250g sUAS. Therefore, it is necessary to prepare regulations on concrete classification and registrations to identify for noncommercial purpose sUAS as soon as possible in Korea.

A Study of Remote Controller Based on Data-Glove Using Flex Sensor for Small Scale UAV (소형 무인비행체를 위한 데이터 글로브 기반 원격조종장치에 관한 연구)

  • Yun, Hae-Seong;Kim, Doo-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.83-84
    • /
    • 2009
  • 최근 다양한 센싱장치와 HCI 디바이스를 결합하여 로봇이나 기계장치를 구동하려는 연구가 활발하게 진행되고 있다. 또한 기존의 RC방식의 무인비행체 조작은 관련분야의 전문성을 필요로 할 만큼 접근하기 어려운 면이 있었다. 이에 본 논문에서는 소형 무인비행체(UAV)의 움직임 제어를 위해 데이터 글로브의 손가락 구부러짐을 인식하여 이를 통해 무인비행체를 조작하는 원격조종장치에 관한 시스템 구조 및 프로토콜을 제안한다. 이 시스템을 통해 비전문가로 하여금 무인비행체의 접근성을 높이며 다양한 분야에 활용 할 수 있는 가능성을 제시하고자 한다. 이를 위해 데이터 글로브의 센싱 데이터에 대한 조합 및 해석방식을 정의하고, 이를 데이터 글로브의 손가락 구부러짐 해석에 적용하였다. 또한 조합된 명령신호를 전송하는 무인비행체의 구동 제어를 위한 비동기 Uplink 프로토콜을 제안하였다.

A Study on Fault Tolerance System for Flight Control Computer and Memory of Small Drones (소형 드론용 비행 제어기 및 메모리를 위한 고장 감내 시스템 연구)

  • Lee, Jeongdu;Cho, Doosan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.425-431
    • /
    • 2020
  • The market for small unmanned aerial vehicles (SUAVs) is growing rapidly as technology advances and makes it possible to use them in various fields. However, due to the rapid increase in small drones, breakdowns, collisions and falls are also increasing year by year, and technologies for reducing accident and securing safety are being actively researched. In particular, the application of a fault tolerance system to cope with unexpected failures during flight is essential. According to data released by the US Department of Defense, accidents caused by errors in flight control computers account for about 28% of all accidents. This paper describes the proposal of flight control computer system's dual structure design to tolerate flight control system failure.

Performance Analysis of an Electric Powered Small Unmanned Aerial Vehicle (전기동력 소형무인항공기의 성능분석)

  • Lee, Chang-Ho;Kim, Seong-Wook;Kim, Dong-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.226-230
    • /
    • 2010
  • In this paper, the performance of an electric powered small Unmanned Aerial Vehicle which has a battery and electric motor is analysed. Aerodynamic data is obtained through flight test and flight performance is predicted. As a result, we present the optimum flight speed for the maximum endurance and predict endurance and range according to the variation of flight speed.

  • PDF

Performance Analysis of an Electric Powered Small Unmanned Aerial Vehicle (전기동력 소형무인항공기의 성능분석)

  • Lee, Chang-Ho;Kim, Sung-Yug;Kim, Dong-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.65-70
    • /
    • 2010
  • A small unmanned aerial vehicle(UAV), which uses a propulsion system consisting of electric motor and battery, weighs less than 8 kg, capable of hand launch. Because it is easy to operate and able to transmit image information in real time, the use of small UAV has been increasing. However, very few analysis methods or analysis results on flight performance of the small UAV have been known so far. In this paper, the performance analysis methods of a small UAV, which is manufactured to study an electric powered UAV, are suggested and their results are achieved. Aerodynamic data of the vehicle are obtained by making use of gliding performance from actual flight test, and required thrust and required power by flight speed are predicted. In addition, the methods to predict range and endurance in case of using battery as power source are suggested and their results are achieved.

A Study on the Application of Quality System Standards in the Safety Certification of LUAVs (무인동력비행장치 안전성인증에서 품질시스템 기준 적용 방안 연구)

  • Ji-Hun Kwon;Shin-Duck Kang;Tae-Seok Oh;Seok-Min Pae;Sauk-Hoon Im
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.64-70
    • /
    • 2024
  • The demand for safety certification of Light Unmanned Aerial Vehicles (LUAVs), weighing between 25kg and 150kg, is rapidly increasing in Korea. Unfortunately, the number of LUAV safety certification failures is also on the rise, with manufacturing quality issues being identified as the main culprit. However, there is a lack of quality system standards for manufacturers within the LUAV safety certification system. As a result, this paper aims to analyze the domestic safety certification system and the quality standards set by the American Society for Testing and Materials (ASTM) for small Unmanned Aerial Systems (sUAS). The goal is to establish quality system inspection standards specifically tailored for LUAV manufacturers. To achieve this, we propose additional inspection items that reflect the characteristics of the manufacturing quality system. These items will be identified through on-site inspections of LUAV manufacturers, ensuring that the resulting quality system standard aligns with the actual situation of domestic manufacturers. In order to gauge the feasibility and effectiveness of the proposed quality system standard, we conducted a survey of seven domestic LUAV manufacturers.

Experimental Study on the Aerodynamic Characteristics of the Ducted fan for the Propulsion of a Small UAV (소형 무인항공기 추진용 덕티드팬의 공력특성에 대한 실험적 연구)

  • Ryu, Min-Hyoung;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.413-422
    • /
    • 2012
  • The ducted fan for a small UAV propulsion can reconnoiter and observe in a town and a small area, it has better thrust efficiency and a long endurance than propeller. Thrust characteristics of hover and for ward flight condition for the ducted fan UAV is important issue to improve a endurance. The unsteady 3-dimensional flow fields of the ducted fan UAV is essential to stable flight. In this paper, to verify the design results of the ducted fan and to investigate a stable aeronautical characteristic, the thrust performance and the unsteady 3-dimensional flow fields are measured. Thrust characteristics for the hovering and the forward flight conditions are measured by the 6-components balance system in the subsonic wind tunnel. The unsteady 3-dimensional flow fields are analyzed by using a stationary $45^{\circ}$ slanted hot-wire technique. The swirl velocity is almost removed behind the stator blades. Therefore, the thrust performance of the ducted fan is improved and the flight stability is maintained.

Tracking of ground objects using image information for autonomous rotary unmanned aerial vehicles (자동 비행 소형 무인 회전익항공기의 영상정보를 이용한 지상 이동물체 추적 연구)

  • Kang, Tae-Hwa;Baek, Kwang-Yul;Mok, Sung-Hoon;Lee, Won-Suk;Lee, Dong-Jin;Lim, Seung-Han;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.490-498
    • /
    • 2010
  • This paper presents an autonomous target tracking approach and technique for transmitting ground control station image periodically for an unmanned aerial vehicle using onboard gimbaled(pan-tilt) camera system. The miniature rotary UAV which was used in this study has a small, high-performance camera, improved target acquisition technique, and autonomous target tracking algorithm. Also in order to stabilize real-time image sequences, image stabilization algorithm was adopted. Finally the target tracking performance was verified through a real flight test.

Estimation and Verification of Commercial Stability Augmentation System Logic for Small UAV (소형무인기 상용 안정성 증대 장치 로직 추정과 검증)

  • Ko, Dong-hyeon;Rahimy, Mohamad;Choi, Keeyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.821-829
    • /
    • 2019
  • Because rotorcraft is unstable, it needs a stability system such as flybar. Recently, sensor technology has been developed, it uses a stability augmentation system to improve stability instead of flybar. To use of these rotorcraft which include stability augmentations system for unmanned system, flight control computer, include stability augmentations system function, must be required. In this paper, a reverse-engineering method of estimating Algorithm of Commercial Stability Augmentation System is proposed, the result is applied in the flight computer to make an unmanned rotorcraft system. Finally using a validated algorithm, it is possible to establish a system of unmanned automatic rotorcraft system.

Development and Estimation of Low Price-Small-Autopilot UAS for Geo-spatial Information Aquisition (지형정보획득용 저가 소형 자동항법 UAS개발 및 평가)

  • Han, Seung Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1343-1351
    • /
    • 2014
  • Recent technological advances in wireless networks and microelectromechanical systems (MEMS) have led to the development of different types of mini-UAVs and their utilizations in various ways. This study endeavors to develop a low-cost mini-UAV with autonomous flight capability, in order to obtain geospatial information of a small or medium-sized area, and also assess its flight stability by comparing the predetermined flight paths against the actual flight paths. Based on a post-development flight test, stable flight has been proven achievable as follows: the maximum endurance speed is 1 hour, the flying distance is 50km, the horizontal accuracy of flight paths is about ${\pm}6{\sim}8m$, and the altitude accuracy is about ${\pm}8m$. Therefore, it is deemed that high-resolution images which can be utilized for geospatial information are obtainable. This indicates that a UAV flying at an altitude of 200m can acquire images across a $2km{\times}3km$ area on the ground within 25 minutes, which validates its high usability for obtaining high-solution images at low altitudes in the future.