클러스터링은 데이터의 정답값(실제값)이 없는 데이터를 기반으로 데이터의 특징벡터의 거리 기반 등으로 군집화를 하는 비지도학습 방법이다. 이 방법은 이미지, 텍스트, 음성 등 다양한 데이터에 대해서 라벨링이 없이 적용할 수 있다는 장점이 있다. 기존 클러스터링을 하기 위해 차원축소 기법을 적용하거나 특정 특징만을 추출하여 군집화하는 방법이 적용되었다. 하지만 딥러닝 기반 모델이 발전하면서 입력 데이터를 잠재 벡터로 표현하는 오토인코더, 생성 적대적 네트워크 등을 통해서 딥 클러스터링의 기술이 연구가 되고 있다. 본 연구에서, 딥러닝 기반의 딥 클러스터링 기법을 제안하였다. 이 방법에서 오토인코더를 이용하여 입력 데이터를 잠재 벡터로 변환하고 이 잠재 벡터를 클러스터 구조에 맞게 벡터 공간을 구성 및 k-평균 클러스터링을 하였다. 실험 환경으로 pytorch 머신러닝 라이브러리를 이용하여 데이터셋으로 MNIST와 Fashion-MNIST을 적용하였다. 모델로는 컨볼루션 신경망 기반인 오토인코더 모델을 사용하였다. 실험결과로 k가 10일 때, MNIST에 대해서 89.42% 정확도를 가졌으며 Fashion-MNIST에 대해서 56.64% 정확도를 가진다.
여러 대의 PC를 활용하여 효율적이고 확장성이 뛰어난 고성능 서버를 구축하는 클러스터링 기술을 기반으로 저렴한 가격으로 동시에 수십 명부터 1,000명(MPEG-1, 1.544Mbps 기준)이상의 사용자에게 멀티미디어 서비스 제공이 가능한 클러스터 기반 대용량 VOD(Video on Demand) 서버 소프트웨어인 MovieRo 개발 내용이다.
컴포넌트 기반의 소프트웨어 개발이 소프트웨어 복잡성, 비용, 그리고 품질을 해결하기 위한 새로운 대안으로 소개되고 있다. COM, Enterprise JavaBeans, CORBA 컴포넌트 모델등과 같은 다양한 컴포넌트 아키텍쳐들이 소개되고 있으며 컴포넌트 기반의 소프트웨어 개발 방법론과 여러 CASE 도구들이 이를 지원하고 있다.[1,2,3,4]. 그러나 현재 컴포넌트를 구현할 수 있는 기술은 제시되어 있지만 컴포넌트를 모델링하는 기법들에 대한 연구는 미약한 상태이다. 본 논문에서는 도메인 분석에서 공통성과 가변성 추출 및 클러스터링 기법을 이용한 컴포넌트를 분석하는 기법을 제시한다. 즉 컴포넌트 추출 기법, 컴포넌트의 핫스팟(또는 가변성)표현 기법, 컴포넌트 요구사항 정의 기법 등을 제시한다. 컴포넌트 개발에 있어서 이러한 모델링 기법을 적용함으로써 컴포넌트를 효율적으로 개발할 수 있을 뿐만 아니라 재사용성이 높은 고품질의 컴포넌트 개발을 지원할 수 있다.
소프트웨어의 측정값에 근거하여 소프트웨어 품질에 관한 의사결정을 할 때, 동치관계의 요구조건인 추이적(transitive) 특성이 항상 만족되는 것은 아니다. 순환수(cyclomatic number)가 거의 비슷한 프로그램에서, 하나의 \"구조적인\" 프로그램 범주에 속하고 또 다른 하나는 \"비구조적인\" 프로그램 범주에 속한다고 명확히 분류할 수 있는가하는 점이다. 따라서, 본 연구에서는 동치관계보다는 허용적 관계를 만족하는 허용적 러프집합에 근거한 소프트웨어 분류기준을 제시하고자 한다. 분류기준을 생성하기 위한 실험 데이터 집합을 수집하고, 집합 내의 각 원소에 관한 허용적 클래스들을 생성한 후, 각 허용적 클래스들의 중심값을 클러스터링하여 분류기준을 생성한다. 생성된 분류기준을 또 다른 실험 집합에 적용하여 비교 분석한 결과 생성된 분류기준이 타당함을 보여준다.생성된 분류기준이 타당함을 보여준다.
소프트웨어의 측정값에 근거하여 소프트웨어 품질에 관한 의사결정을 할 때, 동치관계의 요구조건인 추이적(transitive) 특성이 항상 만족되는 것은 아니다. 순환수(cyclomatic number)가 거의 비슷한 프로그램에서, 하나는 "구조적인" 프로그램 범주에 속하고 또 다른 하나는 비구조적인 프로그램 범주에 속한다고 명확히 분류 할 수 있는가하는 점이다. 따라서, 본 연구에서는 동치관계보다는 허용적 관계를 만족하는 허용적 러프집합에 근거한 소프트웨어 분류 기준 제시하고자 한다. 분류기준을 생성하기 위한 실험 데이터 집합을 수집하고, 집합 내의 각 원소에 관한 허용적 클래스들을 생성한 후, 각 허용적 클래스들의 중심값을 클러스터링하여 분류기준을 생성한다. 생성된 분류기준을 또 다른 실험 집합에 적용하여 비교 분석하여 생성된 분류기준이 타당함을 보여준다.
컴포넌트 기반 소프트웨어개발 (CBD: Component Based Development)은 재사용 부품을 기반하여 소프트웨어 개발, 수정, 유지보수를 용이하게 지원한다. 따라서 컴포넌트는 강한 응집력과 양한 결합력으로 개발되어야 한다. 본 논문에서는use case와 클래스를 간에 유사성을 통한 클러스터링 분석에 기반 하여 컴포넌트 식별에 대해 연구한다. 컴포넌트 참조 모델과 프레임워크를 제시하여 사례를 통해 검증한다. 컴포넌트 식별 방법은 추출, 명세 및 아키?쳐를 지원한다. 이들 방법론은 기존의 객체지향 방법론을 참조하며 분석에서 구현까지의 추적성을 지원하며 재사용 컴포넌트의 모듈성 지원을 위해 강한 응집력과 약한 결합력을 반영한다.
2D-Gel 이미지간의 유사성을 기준으로 생물학적인 시료가 프로테옴 수준에서 유사성의 정도와 서로 다른 단백질 스팟을 파악해 낼 수 있다. 그러나 생물학적인 시료는 개체간 변화가 크고 2차원 전기영동장치의 재현성의 한계로 인하여 비교가 어려운 경우가 많고 의미 없는 차이점만 발견되는 경우 또한 비일비재하다. 이를 극복하기 위해서는 프로테옴 이미지간의 정렬을 통하여 정확한 비교가 가능하게 하여야한다. 본 연구에서는 이미지상의 단백질 스팟을 일일이 찾지 않고 여러 개의 원시 이미지를 동시에 정렬시키는 multiresolution-multilevel algorithm을 활용하여 소프트웨어를 개발하였다. 또 이렇게 정렬된 이미지들이 서로 얼마나 유사한지 보여주는 Phylogenetic tree를 자동으로 생성시키는 소프트웨어를 개발하였다. 이 방법을 이용하여 Fetal Alcohol Syndrome의 case와 control의 10개의 프로테옴 이미지에 대하여 클러스터링을 시도하였다. 이와 같이 2D-Gel 프로테옴 전체의 이미지를 비교하여 유사한 정도에 따라 모으는 클러스터링은 FAS 시료의 경우 case와 control 보다는 시료원의 외연적인 특징인 나이 혹은 성별에 더 의하여 의존하는 것으로 나타났다.
유전자 알고리즘은 원하는 최적해를 찾기 위해서 개체 집단의 크기를 가능한 크게 유지하여야 한다. 하지만 실제 문제에서 개체의 적합도를 평가하는 것이 어려운 경우가 많기 때문에 큰 집단의 모든 개체에 대하여 적합도를 평가하는 것은 많은 시간과 비용을 요구한다. 이에 본 논문에서는 집단의 크기를 크게 유지하되 클러스터링에 의해 대표 개체만을 평가함으로써 효율을 높이는 퍼지 글러스터링 기반의 국소 평가 유전자 알고리즘을 제안한다. 나머지 개체들은 대표 개체로부터 간접적으로 적합도를 분배받는다. 다수의 집단에 소속되는 개체들의 경우, 하드 클러스터링 방법으로는 정확한 적합도 분배를 하기 어렵기 때문에 퍼지 c-means 알고리즘을 사용하였고, 클러스터 결과인 퍼지 소속 행렬에 의해 적합도를 배분하였다. 9개의 벤치마크 적합도 함수에 대하여 6가지 하드 클러스터링 알고리즘을 적용한 유클리디안 거리와 피어슨 상관계수에 의한 적합도 배분 방법과 본 논문에서 제안하는 방법을 비교 실천한 결과, 제안한 방법의 우수한 성능을 확인할 수 있었다.
셀룰러 유전알고리즘(CGAs)은 모집단이 특정한 위상 구조를 갖는 유전알고리즘의 일종이다. 보통의 경우, CGAs의 모집단 공간은 네트워크 이론 측면에서 상대적으로 긴 평균경로길이와 큰 클러스터링계수를 갖는 정규 격자형 위상 구조이다. 평균경로길이가 길면 멀리 떨어진 개체들 사이의 유전적 상호작용이 느리게 일어난다. 따라서 클러스터링계수를 유지하면서 평균경로길이를 줄인다면 개체의 다양성이 유지되면서도 모집단이 보다 빠르게 수렴할 것이다. 이 논문에서는 최소좁은세상 셀룰러 유전알고리즘(SSWCGAs)을 제안한다. SSWCGAs에서 각 개체는 클러스터링이 잘되었으면서도 노드를 연결하는 평균경로길이가 짧은 모집단에 거주하여, 클러스터링에 의한 세부탐색 능력을 유지하면서도 전역탐색을 잘하게 된다. 네 가지 실변수 함수와 두 가지 GA-hard 문제에 대한 실험을 통하여 SSWCGAs가 SGAs 및 CGAs보다 효과적임을 보였다.
본 논문은 점층적으로 대규모 문서 분류를 할 수 있는 새로운 클러스터링 알고리즘에 대한 것으로, 고차원의 대규모 문서 집합에 대한 클러스터링을 수행하는 spherical k-means (SKM) 알고리즘과 점층적인 방식으로 클러스터링을 수행하는 퍼지(fuzzy) ART(adaptive resonance theory) 신경망의 특징을 이용하였다. 즉, SKM의 벡터 공간 모델과 개념벡터를 토대로 퍼지 ART의 경계변수의 개념을 결합한 것이다. 제시하는 알고리즘은 점층적 클러스터링의 지원과 함께 최적의 클러스터 수를 자동으로 결정할 뿐 아니라 이상치(outlier)와 노이즈(noise)에 의한 overfitting의 문제도 해결하였다. 또한 생성된 클러스터들의 질을 평가할 수 있는 응집도를 측정하는 목적 함수의 값에 있어서도 CLASSIC3 데이타 집합으로 실험한 결과 기존의 SKM에 비해 평균 8.04%의 향상된 응집도를 나타냈다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.