• 제목/요약/키워드: 소프트웨어 결함 예측

검색결과 508건 처리시간 0.031초

GA-SVM을 이용한 결함 경향이 있는 소프트웨어 모듈 예측 (Predicting Defect-Prone Software Module Using GA-SVM)

  • 김영옥;권기태
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 2013
  • 소프트웨어의 결함 경향 모듈 예측을 위해 SVM 분류기가 우수한 성능을 보인다는 연구들이 많지만, SVM에서 필요한 파라미터 선정 시 매 커널마다 다르게 선정해야 하고, 파라미터의 변경에 따른 결과예측을 위해 알고리즘을 반복적으로 수행해야 하는 불편함이 있다. 따라서 본 논문에서는 SVM의 파라미터 선정 시 유전알고리즘을 이용하여 스스로 찾게 하는 GA-SVM 모델을 구현하였다. 그리고 분류 성능 비교를 위해 신경망의 역전파알고리즘을 이용하여 분류했던 기존 논문과 비교 분석한 결과, GA-SVM 모델의 성능이 더 우수함을 확인하였다.

유전자 알고리즘을 이용한 초기 신뢰도 예측 모델 (An Early Reliability Prediction Model Using Genetic Algorithm)

  • 권용일;정혁철;홍의석;이명재;우치수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (1)
    • /
    • pp.635-637
    • /
    • 1998
  • 시험 단계나 운용 단계에서 발견된 소프트웨어의 오류를 수정하기 위해서는 많은 비용을 투자해야 한다. 시스템 개발 초기 단계인 설계 단계에서 소프트웨어 시스템의 신뢰도에 영향을 많이 미치는 부분을 찾아 오류를 사전에 방지하는 연구가 많이 진행되고 있다. 모듈의 신뢰도를 설계 단계에서 예측할 수 있다면 프로젝트 관리자는 결함 경향이 강한 모듈 개발에 더 많은 자원을 할당함으로써 보다 신뢰성 있는 소프트웨어를 생산 할 수 있다. 본 논문에서는 실시간 소프트웨어의 설계 결과에 대한 복잡도 측정치를 토대로 신뢰도를 예측하는 모델을 제안하다. 유전자 알고리즘으로 찾아낸 이 모델을 사용하여 결함 경향이 강한(fault prone) 모듈과 그렇지 않은 모듈은 96%의 정확도로 선별해 낼 수 있다.

웹 소프트웨어 규모 예측에 관한 연구 (A Study of Estimation for Web Software Size)

  • 김지현;유해영
    • 정보처리학회논문지D
    • /
    • 제12D권3호
    • /
    • pp.409-416
    • /
    • 2005
  • 소프트웨어 개발 패러다임이 21세기에 들어서며 웹 기반으로 빠르게 전환되고 있으나 웹 환경에 적합한 품질 및 예측 매트릭에 대한 연구는 매우 미흡한 실정이다. 본 연구는 웹 소프트웨어의 규모와 객체 속성의 상관관계를 분석하여 실 업무에서 사용되고 있는 ASP 기반의 3개 프로젝트를 대상으로 결함 가능성이 높은 프로그램을 추출하고 프로그램 규모와 클래스 수나 메소드 수에 대한 선형회귀분석을 통하여 웹 소프트웨어의 규모 예측에 적합한 모델을 제안한다. 서버, 클라이언트, HTML의 복합구조를 가지는 웹 소프트웨어 중 자바스크립트 form 파일 유형의 높은 상관관계와 규모 예측에 적합한 메소드 수 매트릭을 제시한다.

고장 데이터의 플롯을 이용한 소프트웨어 신뢰도 성장 모델의 성능평가 (Performance estimation for Software Reliability Growth Model that Use Plot of Failure Data)

  • 정혜정;양해술;박인수
    • 정보처리학회논문지D
    • /
    • 제10D권5호
    • /
    • pp.829-836
    • /
    • 2003
  • 소프트웨어 신뢰도 성장 모델은 다양하게 연구되어져 있다. 그러나 이러한 모델에서 정확한 모수를 측정하는 것은 그리 쉽지 않다. 특히 고장 데이터에 대하여 소프트웨어 신뢰도 성장 모델의 추정이 정확히 이루어져야만 모델을 설명하는 모수의 추정도 정확하게 이루어질 수 있다. 이러한 측면에서 테스팅을 통해서 얻어진 소프트웨어의 고장 데이터의 정규확률점수를 구해서 두 개의 값에 대한 플롯을 그려보고 그려진 결과를 이용해서 분포를 예측하여 예측된 분포에 적합한 소프트웨어 신뢰도 성장 모델을 적용한다면 상당히 정확한 테스팅 결과론 얻을 수 있을 것이다. 본 논문에서는 고장 테이터의 플롯을 통한 결과를 통해서 분포를 예측하고 모델을 성능평가 척도에 따라서 모의실험을 하여 그 결과를 통해서 소프트웨어 신뢰도 성장 모델의 적합성을 검정하는 연구이다. 연구결과 고장데이터의 정규점수를 이용한 플롯을 보고 소프트웨어 신뢰도 성장 모델을 예측할 수 있었고 이러한 예측을 통해서 모델 선정한다면 모델의 성능평가에서도 우수함을 확인할 수 있다.

소프트웨어의 운전중 결함 예측 기법 (Estimating Defects of Software During Operational Use)

  • 최규식;장원석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (상)
    • /
    • pp.397-400
    • /
    • 2001
  • 본 논문에서는 운전 단계중의 상용소프트웨어 성장활용을 설명한 수 있고 또 현장 고장 데이타로부터 활용성장을 예측하는데 관계되는 인자를 결합할 수 있는 새로운 모델을 개발한다. 이 모델은 상용 소프트웨어의 실제 황용이 시간의 멱수 함수로 나타난다는 가정으로부터 생기는 웨이블 분포에 근거한다. 선형신뢰도모델은 잔여결함의 평균크기와 작업량이 일정하고 겉보기 결함밀도가 실제 결함밀도와 동일하다는 가정 하에 유도된다. 기하학적모델은 결함을 수정함에 따라 평균결합크기가 기하학적으로 감소한다는 가정에 있어서 파이가 있다. 한편, Rayleigh모델은 잔여 결함의 평균크기가 시간에 따라 선형적으로 감소한다는 가정에 있어서 차이가 있다. 본 논문에서는 소프트웨어의 신뢰도 요인의 거동을 가정하여 이러한 다양성을 수용하기 위한 모델링을 하였다.

  • PDF

테스트노력과 결함검출비를 이용한 소프트웨어신뢰도 모델링에 관한 연구 (A Study on the S/W Reliability Modeling using Testing Efforts and Detection Rate)

  • 최규식;김종기;장원석
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.473-479
    • /
    • 2002
  • NHPP에 근거한 SRGM을 구성하는 새로운 안을 제시한다. 본 논문의 주요 초점은 소프트웨어 신뢰도모델링에서 효과적인 파라미터분해기법을 제공하는 것이다. 이는 테스트노력과 결함검출비를 동시에 고려하는 것이다. 일반적으로, 소프트웨어결함검출/제거메카니즘은 이전의 검출/제거결함과 테스트노력을 어떻게 활용하느냐에 달려있다. 실제 현장 연구로부터 우리는 테스트노력소모패턴을 추론하여 FDR의 경향을 예측할 수 있을 것으로 생각된다. 결함검출이 증가, 감소 및 일정한 것 등 광범위에 걸쳐서 나타나는 경향을 잡아내는 고유의 융통성을 가지는 하나의 시변수집합인 FDR모델에 근거한 테스트노력을 개발하였다. 이 스킴은 구조에 융통성이 있어서 여러 가지 테스트노력을 고려하여 광범위한 소프트웨어 개발 환경을 모델화할 수 있다 본 논문에서는 FDR을 기술하고, 관련된 테스트 행위를 이러한 새로운 모델링접근법에 연합시킬 수 있다. 우리의 모델과 그리고 이것과 관련된 파라미터 분해기법을 적용한 것을 여러 가지 소프트웨어 프로젝트에서 도출한 실제 데이터집합을 통하여 시연한다. 분석결과에 의하면 SRGM에 관한 테스트노력과 FDR을 결합하기 위한 제안된 구조가 상당히 정확한 예측능력을 보여주고 있으며, 실제 수명상황을 좀더 정대하게 설명해 준다. 이 기법은 광범위한 소프트웨어시스템에 쓰일 수 있다.

  • PDF

객체지향 메트릭을 이용한 결함 예측 모형의 임계치 설정에 관한 실험 (An Experiment for Determining Threshold of Defect Prediction Models using Object Oriented Metrics)

  • 김윤규;채흥석
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권12호
    • /
    • pp.943-947
    • /
    • 2009
  • 소프트웨어의 결함을 예측하고 검증과 확인 활동을 통하여 효율적인 자원을 관리하기 위하여 많은 연구에서 결함 예측 모형을 제안하고 있다. 하지만 기존의 연구는 예측율이 최대 효과를 보이는 임계치에 결함 예측 모형의 예측율을 평가하고 있다. 이는 측정 시스템의 결함 정보를 알고 있는 가정하에서 평가가 이루어지는 것이기 때문에 실제 결함 정보를 알 수 없는 시스템에서는 최적의 임계치를 결정할 수 없다. 그러므로 임계치 선정의 중요성을 확인하기 위하여 본 연구에서는 결함 예측 모형으로 타 시스템의 결함을 예측하는 비교 실험을 하였다. 실험은 기존에 제안된 3개의 결함 예측 모형과 4개의 시스템을 대상으로 하였고 결함 예측 모형의 임계치별 예측의 정확성을 비교하였다. 실험결과에서 임계치는 모형의 예측율과 높은 관련이 있었지만 실제 결함 정보가 확인 안 되는 시스템에 대하여 결함을 예측하는 경우에는 임계치를 선정할 수 없음을 확인하였다. 따라서 결함 예측 모형을 타 시스템에 적용하기 위하석 임계치 선정에 관한 추후 연구가 필요함을 확인하였다.

리팩토링을 위한 소프트웨어 메트릭의 베이지안 네트워크 기반 확률적 관리 (Bayesian Network-based Probabilistic Management of Software Metrics for Refactoring)

  • 최승희;이구연
    • 정보과학회 논문지
    • /
    • 제43권12호
    • /
    • pp.1334-1341
    • /
    • 2016
  • 최근 지능형 스마트 디바이스의 눈부신 발전과 사용으로 개발 단계의 소프트웨어 결함 관리의 중요성이 부각되고 있다. 효과적 결함 관리를 위해 소프트웨어 메트릭을 토대로 많은 결함 예측 모델 연구가 수행되고 있지만, 결함 예측 모델 연구 성과가 널리 확산되지는 못하고 있다. 본 논문에서는 결함 존재 유무에 관한 이진적 결함 예측 모델의 제약을 극복할 수 있도록, 베이지안 네트워크 기반 확률적 소프트웨어 메트릭 관리 방법을 제안한다. 제안 모델은 소프트웨어 메트릭을 활용하여 베이지안 네트워크를 구성하고, 이를 토대로 베이지안 추론을 수행하여 리팩토링을 위한 개선점을 식별할 수 있는 모델이다. 코드 리팩토링을 통해 소스 코드가 개선되면 관련 메트릭 측정값 또한 변하게 된다. 제안 모델은 리팩토링을 통한 메트릭의 개선으로 얻을 수 있는 결함 제거 효과를 확률 값으로 제시해준다. 따라서 이진 값 형태의 확정성을 극복할 수 있으며, 불확정적인 확률 값으로 의사결정의 유연성을 확보할 수 있을 것이다.

KPA Rating Data의 보정모텔에 의한 결함분석 (Defect Analysis with KPA Rating Data Calibration Model)

  • 유재구;이은서;이경환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.55-57
    • /
    • 2003
  • 소프트웨어 시장의 요구가 빠르게 변화됨에 따라서 소프트웨어 프로젝트의 관리가 비용, 스케줄, 품질의 관점에서 절충하는 문제가 제기되고 있다. 소프트웨어 개발 업체들은 적은 개발비용으로 사용자의 기대를 만족시키는 고품질의 소프트웨어를 단기간에 출시하고자 많은 노력을 기울이고 있으며, 소프트웨어 제품과 프로세스를 관리하고 예측할 수 있는 능력을 확보하고자 노력하고 있다. 본 논문에서는 CMM의 성숙도 단계를 구현하기 위해 달성해야하는 핵심영역인 KPA 성숙도 설문서의 rating 보정을 통해서 KPA 설문의 결함을 추출하고, 원인분석을 통한 결함분석 모델을 제안하고자 한다.

  • PDF

신경망을 이용한 소프트웨어 취약 여부 예측 시스템 (Software Vulnerability Prediction System Using Neural Network)

  • 최민준;구동영;윤주범
    • 정보보호학회논문지
    • /
    • 제29권3호
    • /
    • pp.557-564
    • /
    • 2019
  • 소프트웨어의 증가에 따라 소프트웨어의 취약점도 함께 증가하고 있다. 다양한 소프트웨어는 다수의 취약점이 존재할 수 있으며 취약점을 통해 많은 피해를 받을 수 있기 때문에 빠르게 탐지하여 제거해야 한다. 현재 소프트웨어의 취약점을 발견하기 위해 다양한 연구가 진행되고 있지만, 수행 속도가 느리거나 예측 정확도가 높지 않다. 따라서 본 논문에서는 신경망 알고리즘을 이용하여 소프트웨어의 취약 여부를 효율적으로 예측하는 방법을 제안하며 나아가 기계학습 알고리즘을 이용한 기존의 시스템과 예측 정확도를 비교한다. 실험 결과 본 논문에서 제안하는 예측 시스템이 가장 높은 예측률을 보였다.