• Title/Summary/Keyword: 소프트웨어 가상화

Search Result 240, Processing Time 0.025 seconds

Massive Electronic Record Management System using iRODS (iRODS를 이용한 대용량 전자기록물 관리 시스템)

  • Han, Yong-Koo;Kim, Jin-Seung;Lee, Seung-Hyun;Lee, Young-Koo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.8
    • /
    • pp.825-836
    • /
    • 2010
  • The advancement of electronic records brought great changes of the records management system. One of the biggest changes is the transition from passive to automatic management system, which manages massive records more efficiently. The integrated Rule-Oriented Data System (iRODS) is a rule-oriented grid system S/W which provides an infrastructure for building massive archive through virtualization. It also allows to define rules for data distribution and back-up. Therefore, iRODS is an ideal tool to build an electronic record management system that manages electronic records automatically. In this paper we describe the issues related to design and implementation of the electronic record management system using iRODS. We also propose a system that serves automatic processing of distribution and back-up of records according to their types by defining iRODS rules. It also provides functions to store and retrieve metadata using iRODS Catalog (iCAT) Database.

Research Trends of Mixed-Criticality System (중요도 혼재 시스템의 연구 동향 분석)

  • Yoon, Moonhyung;Park, Junho;Kim, Yongho;Yi, JeongHoon;Koo, BongJoo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.9
    • /
    • pp.125-140
    • /
    • 2018
  • Due to rapid development of semiconductor technology, embedded systems have been developed from single-functional system to the multi-functional system. The system composed of software that has different criticality level is called Mixed-Criticality System. Currently, the project related to the Mixed-Criticality System is accelerating the efforts to seek the development direction and take technical initiatives led by EU and USA where the related industry has developed, but the movement in Korea is yet insignificant. Therefore, it is urgent to perform the research and project of various basic technologies to occupy the initiative for the related technology and market. In this paper, we analyze the trends of major project researches and developments related to the MCS. First, after defining the definition of the MCS and system model, we analyze the underlying technology constituting the MCS. In addition, we analyze the project trends of each country researching MCS and discuss the future research areas. Through this study, it is possible to grasp the research trends of the world in order to establish the research direction of the MCS and to lay the foundation for the integration into the military system.

Real-Time Hand Pose Tracking and Finger Action Recognition Based on 3D Hand Modeling (3차원 손 모델링 기반의 실시간 손 포즈 추적 및 손가락 동작 인식)

  • Suk, Heung-Il;Lee, Ji-Hong;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.12
    • /
    • pp.780-788
    • /
    • 2008
  • Modeling hand poses and tracking its movement are one of the challenging problems in computer vision. There are two typical approaches for the reconstruction of hand poses in 3D, depending on the number of cameras from which images are captured. One is to capture images from multiple cameras or a stereo camera. The other is to capture images from a single camera. The former approach is relatively limited, because of the environmental constraints for setting up multiple cameras. In this paper we propose a method of reconstructing 3D hand poses from a 2D input image sequence captured from a single camera by means of Belief Propagation in a graphical model and recognizing a finger clicking motion using a hidden Markov model. We define a graphical model with hidden nodes representing joints of a hand, and observable nodes with the features extracted from a 2D input image sequence. To track hand poses in 3D, we use a Belief Propagation algorithm, which provides a robust and unified framework for inference in a graphical model. From the estimated 3D hand pose we extract the information for each finger's motion, which is then fed into a hidden Markov model. To recognize natural finger actions, we consider the movements of all the fingers to recognize a single finger's action. We applied the proposed method to a virtual keypad system and the result showed a high recognition rate of 94.66% with 300 test data.

Stereoscopic Free-viewpoint Tour-Into-Picture Generation from a Single Image (단안 영상의 입체 자유시점 Tour-Into-Picture)

  • Kim, Je-Dong;Lee, Kwang-Hoon;Kim, Man-Bae
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.163-172
    • /
    • 2010
  • The free viewpoint video delivers an active contents where users can see the images rendered from the viewpoints chosen by them. Its applications are found in broad areas, especially museum tour, entertainment and so forth. As a new free-viewpoint application, this paper presents a stereoscopic free-viewpoint TIP (Tour Into Picture) where users can navigate the inside of a single image controlling a virtual camera and utilizing depth data. Unlike conventional TIP methods providing 2D image or video, our proposed method can provide users with 3D stereoscopic and free-viewpoint contents. Navigating a picture with stereoscopic viewing can deliver more realistic and immersive perception. The method uses semi-automatic processing to make foreground mask, background image, and depth map. The second step is to navigate the single picture and to obtain rendered images by perspective projection. For the free-viewpoint viewing, a virtual camera whose operations include translation, rotation, look-around, and zooming is operated. In experiments, the proposed method was tested eth 'Danopungjun' that is one of famous paintings made in Chosun Dynasty. The free-viewpoint software is developed based on MFC Visual C++ and OpenGL libraries.

Distribute Intelligent Multi-Agent Technology for User Service in Ubiquitous Environment (유비쿼터스 환경의 사용자 서비스를 위한 분산 지능형 에이전트 기술)

  • Choi, Jung-Hwa;Choi, Yong-June;Park, Young-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.9
    • /
    • pp.817-827
    • /
    • 2007
  • In the age of ubiquitous environment, huge number of devices and computing services are provided to users. Personalized service, which is modeled according to the character of each and every individual is of particular need. In order to provide various dynamic services according to user's movement, service unit and operating mode should be able to operate automatically with minimum user intervention. In this paper, we discuss the steps of offering approximate service based on user's request in ubiquitous environment. First, we present our simulator designed for modeling the physical resource and computing object in smart space - the infrastructure in ubiquitous. Second, intelligent agents, which we developed based on a FIPA specification compliant multi-agent framework will be discussed. These intelligent agents are developed for achieving the service goal through cooperation between distributed agents. Third, we propose an automated service discovery and composition method in heterogeneous environment using semantic message communication between agents, according to the movement by the user interacting with the service available in the smart space. Fourth, we provide personalized service through agent monitoring anytime, anywhere from user's profile information stored on handhold device. Therefore, our research provides high quality service more than general automated service operation.

A Data Model for an Object-based Faceted Thesaurus System Supporting Multiple Dimensions of View in a Visualized Environment (시각화된 환경에서 다차원 관점을 지원하는 객체기반 패싯 시소러스 관리 시스템 모델의 정형화 및 구현)

  • Kim, Won-Jung;Yang, Jae-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.9
    • /
    • pp.828-847
    • /
    • 2007
  • In this paper we propose a formal data model of an object-based thesaurus system supporting multi-dimensional facets. According to facets reflecting on respective user perspectives, it supports systematic construction, browsing, navigating and referencing of thesauri. Unlike other faceted thesaurus systems, it systematically manages its complexity by appropriately ing sophisticated conceptual structure through visualized browsing and navigation as well as construction. The browsing and navigation is performed by dynamically generating multi-dimensional virtual thesaurus hierarchies called "faceted thesaurus hierarchies." The hierarchies are automatically constructed by combining facets, each representing a dimension of view. Such automatic construction may make it possible the flexible extension of thesauri for they can be easily upgraded by pure insertion or deletion of facets. With a well defined set of self-referential queries, the thesauri can also be effectively referenced from multiple view points since they are structured by appropriately interpreting the semantics of instances based on facets. In this paper, we first formalize the underlying model and then implement its prototype to demonstrate its feasibility.

Implementation of GLCM/GLDV-based Texture Algorithm and Its Application to High Resolution Imagery Analysis (GLCM/GLDV 기반 Texture 알고리즘 구현과 고 해상도 영상분석 적용)

  • Lee Kiwon;Jeon So-Hee;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.121-133
    • /
    • 2005
  • Texture imaging, which means texture image creation by co-occurrence relation, has been known as one of the useful image analysis methodologies. For this purpose, most commercial remote sensing software provides texture analysis function named GLCM (Grey Level Co-occurrence Matrix). In this study, texture-imaging program based on GLCM algorithm is newly implemented. As well, texture imaging modules for GLDV (Grey Level Difference Vector) are contained in this program. As for GLCM/GLDV Texture imaging parameters, it composed of six types of second order texture functions such as Homogeneity, Dissimilarity, Energy, Entropy, Angular Second Moment, and Contrast. As for co-occurrence directionality in GLCM/GLDV, two direction modes such as Omni-mode and Circular mode newly implemented in this program are provided with basic eight-direction mode. Omni-mode is to compute all direction to avoid directionality complexity in the practical level, and circular direction is to compute texture parameters by circular direction surrounding a target pixel in a kernel. At the second phase of this study, some case studies with artificial image and actual satellite imagery are carried out to analyze texture images in different parameters and modes by correlation matrix analysis. It is concluded that selection of texture parameters and modes is the critical issues in an application based on texture image fusion.

Full mouth rehabilitation for a patient with vertical dimension loss using digital diagnostic analysis: A clinical report (수직고경이 감소된 환자의 디지털 진단 분석을 이용한 완전 구강 회복 증례)

  • Choi, Yeawon;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Kim, Hyeong-Seob;Kwon, Kung-Rock;Pae, Ahran
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.4
    • /
    • pp.487-496
    • /
    • 2021
  • Full mouth rehabilitation is re-organizing the occlusion of the remaining teeth and missing teeth considering the functions, esthetics, and neuromuscular harmony. With the loss of multiple teeth, the patient's occlusal plane gradually collapses and the vertical dimension can be reduced. Since reduced vertical dimension can be a potential etiology of the temporomandibular joint and masticatory muscles, prosthetic restoration with increased vertical dimension is required. This case report is about a 68 years old patient with vertical dimension loss due to worn dentition and multiple loss of teeth. In this case, the loss of vertical dimension is assessed carefully using the digital dentistry technology. Using CAD software in digital analysis step, the occlusal plane was established and evaluated using several criteria. Orienting the position of the bone and teeth using CBCT image, patient's condition was visualized in 3 dimension and treatment planning was possible virtually. The information that matches the patient's condylar position with the articulator, which is the virtual face bow, is reproduced on the actual articulator, and evaluated again. After the evaluation, provisional prosthesis was fabricated and it was confirmed that the patient adapts without any abnormality. This was implemented as a final prosthesis. As a result, the patient obtained satisfying results, utilizing the benefits of digital dentistry technology and traditional methods.

Development of System for Real-Time Object Recognition and Matching using Deep Learning at Simulated Lunar Surface Environment (딥러닝 기반 달 표면 모사 환경 실시간 객체 인식 및 매칭 시스템 개발)

  • Jong-Ho Na;Jun-Ho Gong;Su-Deuk Lee;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.281-298
    • /
    • 2023
  • Continuous research efforts are being devoted to unmanned mobile platforms for lunar exploration. There is an ongoing demand for real-time information processing to accurately determine the positioning and mapping of areas of interest on the lunar surface. To apply deep learning processing and analysis techniques to practical rovers, research on software integration and optimization is imperative. In this study, a foundational investigation has been conducted on real-time analysis of virtual lunar base construction site images, aimed at automatically quantifying spatial information of key objects. This study involved transitioning from an existing region-based object recognition algorithm to a boundary box-based algorithm, thus enhancing object recognition accuracy and inference speed. To facilitate extensive data-based object matching training, the Batch Hard Triplet Mining technique was introduced, and research was conducted to optimize both training and inference processes. Furthermore, an improved software system for object recognition and identical object matching was integrated, accompanied by the development of visualization software for the automatic matching of identical objects within input images. Leveraging satellite simulative captured video data for training objects and moving object-captured video data for inference, training and inference for identical object matching were successfully executed. The outcomes of this research suggest the feasibility of implementing 3D spatial information based on continuous-capture video data of mobile platforms and utilizing it for positioning objects within regions of interest. As a result, these findings are expected to contribute to the integration of an automated on-site system for video-based construction monitoring and control of significant target objects within future lunar base construction sites.

A Study on the Improvement Scheme of University's Software Education

  • Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.243-250
    • /
    • 2020
  • In this paper, we propose an effective software education scheme for universities. The key idea of this software education scheme is to analyze software curriculum of QS world university rankings Top 10, SW-oriented university, and regional main national university. And based on the results, we propose five improvements for the effective SW education method of universities. The first is to enhance the adaptability of the industry by developing courses based on the SW developer's job analysis in the curriculum development process. Second, it is necessary to strengthen the curriculum of the 4th industrial revolution core technologies(cloud computing, big data, virtual/augmented reality, Internet of things, etc.) and integrate them with various fields such as medical, bio, sensor, human, and cognitive science. Third, programming language education should be included in software convergence course after basic syntax education to implement projects in various fields. In addition, the curriculum for developing system programming developers and back-end developers should be strengthened rather than application program developers. Fourth, it offers opportunities to participate in industrial projects by reinforcing courses such as capstone design and comprehensive design, which enables product-based self-directed learning. Fifth, it is necessary to develop university-specific curriculum based on local industry by reinforcing internship or industry-academic program that can acquire skills in local industry field.