• Title/Summary/Keyword: 소프트리소그래피

Search Result 22, Processing Time 0.148 seconds

Self Assembled Patterns of Ag Using Hydrophobic and Hydrophilic Surface Characteristics of Glass (유리기판의 친수.소수 상태 변화를 이용한 자기정렬 Ag Pattern 형성 연구)

  • Choo Byoung-Kwon;Choi Jung-Su;Kim Gun-Jeong;Lee Sun-Hee;Park Kyu-Cang;Jang Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.354-359
    • /
    • 2006
  • Recently, the interest in lithography without photo exposure has been increased compare to the conventional photolithography in nano meter and micrometer size patterning area. We studied a self aligned dipping of Ag solution through micro contact printing (${\mu}-CP$) with octadecyltrichlorosilane (OTS) treated polydimethylsiloxane (PDMS) soft mold. The OTS monolayer on the patterned PDMS was formed by dipping it into OTS solution. We transferred the OTS monolayer from PDMS mold to the glass. The OTS monolayer changed the surface energy from hydrophilic surface to hydrophobic surface, And then we made self aligned Ag solution patterns just after dipping the substrate, using adhesion difference of Ag solution between OTS treated hydrophobic area and non-OTS treated hydrophilic area. We finally get the Ag patterns through only dip-coating after the ${\mu}-CP$ process. And we observed surface energies on the glass substrate through the contact angle measurements as time goes on.

Microchannels for the Flow Control of Two Fluids with Different Volumes (부피가 다른 두 유체의 효과적인 유동제어를 위한 미세채널)

  • La, Moon-Woo;Ho, Jae-Yun;Kim, Dong-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.89-95
    • /
    • 2012
  • In this paper, microchannels for the flow control of two fluids with different volumes have been designed, fabricated, and verified. The dimensions of the inlets were determined based on the Stokes equation in order to realize that the flow of the two fluids meet at the same time, and to maintain a certain configuration when the flows passed through each inlet channel. The designed microchannels were confirmed using computational fluid dynamics simulation for the incompressible, Newtonian, and transient flows. In addition, a microfluidic system containing the designed microchannels was fabricated by soft lithography, and the pressure-driven flows of the two fluids were characterized by microfluidic experiments.

Fabrication of Micropattern by Microcontact Printing (미세접촉인쇄기법을 이용한 미세패턴 제작)

  • 조정대;이응숙;최대근;양승만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1224-1226
    • /
    • 2003
  • In this work, we developed a high resolution printing technique based on transferring a pattern from a PDMS stamp to a Pd and Au substrate by microcontact printing Also, we fabricated various 2D metallic and polymeric nano patterns with the feature resolution of sub-micrometer scale by using the method of microcontact printing (${\mu}$CP) based on soft lithography. Silicon masters for the micro molding were made by e-beam lithography. Composite poly(dimethylsiloxane) (PDMS) molds were composed of a thin, hard layer supported by soft PDMS layer. From this work, it is certificated that composite PDMS mold and undercutting technique play an important role in the generation of a clear SAM nanopattern on Pd and Au substrate.

  • PDF

A tunable inverse-hemisphere-shaped Bragg grating sensor (튜닝가능한 역반구형의 브래그 그레이팅 센서)

  • Ryu, Yunha;Kim, Kyoungsik
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.2
    • /
    • pp.48-50
    • /
    • 2013
  • In this work, we investigated the diffraction of inverse-hemisphere shaped polymer grating. The grating was fabricated by using soft lithography of hexagonally close-packed PS nanospheres. The periodicity of the grating was tuned by swelling in acetone and the diffraction wavelength shift induced from lattice change was measured. This device can be used as a strain gauge or a chemical sensor.

Fabrication and application of cell-based microfluidic chip for eye-irritation test of chemicals (화학 물질의 안자극 시험용 세포 기반 미세유체 칩의 제작 및 응용)

  • Cho, Sujin;Rhee, Seog Woo
    • Analytical Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.275-283
    • /
    • 2021
  • This study presents the development of cell-based microfluidic chips for the performance of acute eye irritation tests due to chemicals and examined some of their applications. Microfluidic chips were fabricated by photolithography and soft lithography, and they had three compartments with different areas for cell culture. Rabbit corneal epithelial cells were used for the eye irritation test. The death of cells cultured inside the chip was monitored at regular time intervals after treatment with an aqueous solution of chemicals, and the cell death rate constants were calculated based on the viability curve. The performance of the microfluidic chip was verified by examining the effects of cell-cell junctions, cell-substrate adhesion, and initial cell numbers compared to cell death rates. Eye irritation tests were performed at various concentrations of an aqueous solution of sodium dodecyl sulfate (SDS), a standard substance for the eye irritant test. The cells were exposed to the SDS aqueous solution for 300 s, and the resulting eye irritation was assessed by cell viability. Finally, the equation for calculating the toxicity score (TS) was derived based on the weighting factor for each compartment in the chip. The cell-based microfluidic chip developed in this study may be used for eye irritation tests from chemicals used in cosmetics and pharmaceuticals.

Simple Fabrication of Micromixer Based on Non-Equilibrium Electrokinetics in Micro/Nano Hybrid Fluidic System (단순공정으로 제작된 마이크로/나노 하이브리드 채널의 불균형 동전기성을 이용한 미세혼합기 연구)

  • Yu, Samuel;Kim, Sun-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.385-390
    • /
    • 2011
  • In this study, we developed a micromixer based on the non-equilibrium electrokinetics at the junction of a microchannel and nanochannel. Two fluid streams were mixed by an electro-osmotic flow and a vortex flow created as a result of the non-equilibrium electrokinetics at the junction of the microchannel and nanochannel. Initially, the microchannel was fabricated using Polydimethylsiloxane (PDMS) by the general soft lithography process and the nanochannel was created at a specific position on the microchannel by applying a high voltage. To evaluate the mixing performance of the micromixer, fluorescent distribution was analyzed by using the fluorescent dye, Rhodamine B. About 90% mixing was achieved with this novel micromixer, and this micromixer can be used in microsystems for biochemical sample analysis.

산화아연 나노막대/PDMS 제작기술과 광학적 특성 연구

  • Go, Yeong-Hwan;Lee, Su-Hyeon;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.474-474
    • /
    • 2013
  • PDMS는 미세패턴을 위해 소프트 리소그래피 널리 활용되어질 뿐만 아니라, 재질이 투명하고 탄성과 강한 내구성을 갖고 있어 유연한 광학 및 전자소자에 이용될 수 있다. 최근에는, 이러한 PDMS를 서브파장구조(subwavelength grating structure)를 형성하거나 텍스쳐(texture)표면구조를 이용한 효과적인 반사방지막(antireflection coating)기판을 제작하여 태양전지 및 디스플레이 소자의 성능을 발전시키는 연구가 활발히 진행되고 있다. 한편, 수열합성법(hydrothermal method)이나 전기화학증착법(electrodeposition method)으로 비교적 간단한 공정을 통해서 다양한 기판위에 산화아연(ZnO) 나노막대(nanorod)를 수직정렬로 성장시킬 수 있는데, 이러한 구조는 반사방지특성의 유효 굴절률 분포(effective refractive index profile)를 갖고 있기 때문에 LED나 태양전지에 성능을 개선할 수 있다. 이에 본 연구에서는 수열합성법을 통해 성장된 수직 정렬된 산화아연 나노막대를 이용한 PDMS 표면의 미세패턴 형성하여 광학적 특성을 분석하였다. 실험을 위해, 스퍼터링을 통해서 산화아연 시드층을 형성한 후, 질산아연헥사수화물과 헥사메틸렌테트라민을 수용액에 담가두어 산화아연 나노막대를 성장시켰으며, PDMS의 베이스와 경화제의 질량비를 10:1으로 용액을 준비하여 수직 정렬된 산화아연 나노막대 표면을 casting method으로 코팅하여 열경화 처리하였다. 제작된 샘플의 형태, 구조 광특성을 관찰하기 위해서 전계방출형전자현미경, X선 회절 분석기, 분광 광도계를 이용하였다.

  • PDF

A Study on the Electrical and Optical Properties of Micro-Pattern of Polypyrrole(PPy) by Using Vapor Phase Polymerization (기상중합법을 이용한 Polypyrrole(PPy) 필름의 전기적/광학적 특성 및 미세패턴 형성에 관한 연구)

  • Han, Yong-Hyeon;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.450-453
    • /
    • 2010
  • The electrical/optical properties and surface structures of polypyrrole (PPy) thin films, which were prepared by liquid phase polymerization (LPP) and vapor phase polymerization (VPP) of pyrrole using FTS as an initiatior are compared. The PPy thin film prepared by VPP showed superior surface resistance characteristics as compared with that prepared by LPP. We investigated the relation between surface morphology of PPy film and surface resistance by surface characteristic analysis. The surface of PPy thin film prepared by VPP was smoother than that prepared by LPP. Micro-patterned PPy thin film could be prepared effectively using VPP-combined ink-jet printing and soft lithography.

Controllable Patterning of an Al Surface by a PDMS Stamp (PDMS를 이용한 균일한 알루미늄 표면 패터닝 연구)

  • Park, Gayun;Kim, Kyungmin;Lee, Hoyeon;Park, Changhyun;Kim, Youngmin;Tak, Yongsug;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.501-504
    • /
    • 2012
  • In this study, etched Al electrodes with ordered arrays of pits and high aspect ratios were successively obtained using a patterned protect layer on the Al surface prepared with soft lithography method. Various methods were applied to fabricate a well ordered protect layer on the Al surface and the difference of etched Al surfaces with and without a protect layer was investigated by using SEM. It was found that the etched Al surfaces were affected by using either a protect layer or a non protect layer. As a result, the Al surface with the well ordered pits could be achieved by protect layer. However, the etched Al with nonuniform pits can be obtained without any protect layers.

Controlled Production of Monodisperse Polycaprolactone Microparticles using Microfluidic Device (미세유체장치를 이용한 생분해성 Polycarprolactone의 단분산성 미세입자 생성제어)

  • Jeong, Heon-Ho
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.283-288
    • /
    • 2019
  • Monodisperse microparticles has been particularly enabling for various applications in the encapsulation and delivery of pharmaceutical agents. The microfluidic devices are attractive candidates to produce highly uniform droplets that serve as templates to form monodisperse microparticles. The microfluidic devices that have micro-scale channel allow precise control of the balance between surface tension and viscous forces in two-phase flows. One of its essential abilities is to generate highly monodisperse droplets. In this paper, a microfluidic approach for preparing monodisperse polycaprolactone (PCL) microparticles is presented. The microfluidic devices that have a flow-focusing generator are manufactured by soft-lithography using polydimethylsiloxane (PDMS). The crucial factors in the droplet generation are the controllability of size and monodispersity of the microdroplets. For this, the volumetric flow rates of the dispersed phase of oil solution and the continuous phase of water to generate monodisperse droplets are optimized. As a result, the optimal flow condition for droplet dripping region that is able to generate uniform droplet is found. Furthermore, the droplets containing PCL polymer by solvent evaporation after collection of droplet from device is solidified to generate the microparticle. The particle size can be controlled by tuning the flow rate and the size of the microchannel. The monodispersity of the PCL particles is measured by a coefficient of variation (CV) below 5%.