• Title/Summary/Keyword: 소지역 통계

Search Result 51, Processing Time 0.02 seconds

Shrinkage Prediction for Small Area Estimations (축소예측을 이용한 소지역 추정)

  • Hwang, Hee-Jin;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.1
    • /
    • pp.109-123
    • /
    • 2008
  • Many small area estimation methods have been suggested. Also for the comparison of the estimation methods, model diagnostic checking techniques have been studied. Almost all of the small area estimators were developed by minimizing MSE(Mean square error) and so the MSE is the well-known comparison criterion for superiority. In this paper we suggested a new small area estimator based on minimizing MSPE(Mean square percentage error) which is recently re-highlighted. Also we compared the new suggested estimator with the estimators explained in Shin et al. (2007) using MSE, MSPE and other diagnostic checking criteria.

K-F기법으로 실업자 수의 소지역추정 - 경제활동인구조사를 중심으로 -

  • Yang, Yeong-Chun;Lee, Sang-Eun;Sin, Min-Ung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.305-309
    • /
    • 2002
  • 소지역에서 직접(direct) 시계열추정을 할 수 있다면, 소지역들 추정에서 최적선형 불편예측량(BLUP)을 일반화 시킬 수 있다. 특히 조사에서 얻어지는 관측 값의 오차가 시간상으로 상관관계가 있다면 Kalman-Filter(K-F)기법이 사용 될 수 있다. 이 연구는 소지역의 실업자 수 추정에서 K-F기법으로 경제활동인구수를 이용하여 현 시점의 소지역 실업자 수를 예측함수(BLUP)를 통해 추정하였다. 그리고 단순 회귀분석 추정치와 비교하였다.

  • PDF

A Small Area Estimation for Monthly Wage Using Mean Squared Percentage Error (MSPE를 이용한 임금총액 소지역 추정)

  • Hwang, Hee-Jin;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.2
    • /
    • pp.403-414
    • /
    • 2009
  • Many researches have been devoted to the small area estimation related with the area level statistics. Almost all of the small area estimation methods are derived based on minimization of mean squared error(MSE). Recently Hwang and Shin (2008) suggested an alternative small area estimation method by minimizing mean squared percentage error. In this paper we apply this small area estimation method to the labor statistics, especially monthly wages by a branch area of labor department. The Monthly Labor Survey data (2007) is used for analysis and comparison of these methods.

Application of In-direct Estimation for Small Area Statistics (소지역 통계 생산을 위한 추정방법)

  • Kim, Young-Won;Sung, Na-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.1
    • /
    • pp.111-126
    • /
    • 2000
  • Small area estimation is becoming important in survey sampling due to a growing demand for reliable small area statistics. In estimating means, totals, and other parameters for small areas of a finite population, samplie sizes for small areas are typically small because the overall sample size is usually determined to provide specific accuracy at a much higher level of aggregation than that of small area. The usual direct estimators that use the only information which is gotten from the sample in a given small area provide unreliable estimates. However, indirect estimators utilize the information from the areas related with a given small area, that is, borrow strength from other related areas, and so give more accurate estimates than direct estimators. In this paper we investigate small area estimation methods such as synthetic, composite and empirical best linear unbiased prediction estimator, and apply them to real domestic data which is from the Survey of Hotels and Restaurants in In-Chon as of 1996 and then evaluate the performance of these methods by measuring average squared errors. This evaluation shows that indirect estimators, which are small area estimation methods, are more efficient than direct estimator.

  • PDF

소지역 추정법을 이용한 시군구의 실업자 추정

  • 이계오;정연수
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2000.11a
    • /
    • pp.229-250
    • /
    • 2000
  • 신뢰할 만한 소지역 통계 작성을 위한 다양한 소지역 추정 기법들이 최근 많은 관심속에 개발되고 있다. 이 논문은 다양한 소지역 추정 기법들 중 일부 기법들에 대한 간략한 소개 및 실례를 제시한다. 먼저 대표적인 소지역에 대한 간접추정법인 인구통계학적 방법, 합성추정법과 복합추정법에 관한 이론 및 추정절차를 살펴보았고, 모형 기반 추정법으로써 경험적 베이즈(EB) 추정법과 계층적 베이즈(HB) 추정법을 소개하였다. 마지막으로 합성추정법과 복합추정법을 이용하여 충북의 시군구 실업자 추정에 적용해 보았고, 시군구 실업자 추정결과를 직접 추정법의 결과와 비교하였다.

  • PDF

소지역에서 Pseudo-EBLUP 추정

  • Sin, Min-Ung;Baek, Jeong-Yong;Kim, Ik-Chan
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.111-115
    • /
    • 2003
  • 소지역 모형들은 고정된(fixed)효과와 랜덤 효과를 포함하는 일반적 선형 혼한 모형의 특별한 경우로 간주될 수 있다. 소지역 평균이나 종계는 고정된 효과와 랜덤 효과의 일치 결합으로 표현될 수 있다. 블록 대각 공분산 구조를 갖는 선형 혼합모형(mixed model) 아래서 EBLUP은 실재문제에 있어서 많이 소지역 모형에 응용된다. 설계 가중값(design weight) 들에 의존하고 설계-일치(design consistency) 성질을 만족하는 Pseudo-EBLUP 추정량들은 소지역추정에서 합해지면 (aggregated) 사후-수정(post-adjustment)없이 벤치마킹 성질을 만족한다.

  • PDF

Evaluations of Small Area Estimations with/without Spatial Terms (공간 통계 활용에 따른 소지역 추정법의 평가)

  • Shin, Key-Il;Choi, Bong-Ho;Lee, Sang-Eun
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.229-244
    • /
    • 2007
  • Among the small area estimation methods, it has been known that hierarchical Bayesian(HB) approach is the most reasonable and effective method. However any model based approaches need good explanatory variables and finding them is the key role in the model based approach. As the lacking of explanatory variables, adopting the spatial terms in the model was introduced. Here in this paper, we evaluate the model based methods with/without spatial terms using the diagnostic methods which were introduced by Brown et al. (2001). And Economic Active Population Survey(2005) is used for data analysis.

Application of In-direct Estimation for Small Area Statistics (소지역 통계분석기법의 활용-도소매업 및 서비스업 통계조사 사례연구-)

  • 김영원;성나영
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2000.06a
    • /
    • pp.57-73
    • /
    • 2000
  • Small area estimation is becoming important in survey sampling due to a growing demand for reliable small area statistics. In estimating means, totals, and other parameters for small areas of a finite population, samplie sizes for small areas are typically small because the overall sample size is usually determined to provide specific accuracy at a much higher level of aggregation than that of small area. The usual direct estimators that use the only information which is gotten from the sample in a given small area provide unreliable estimates. However, indirect estimators utilize the information from the areas related with a given small area, that is borrow strength from other related areas, and so give more accurate estimates than direct estimators. In this paper we investigate small area estimation methods such as synthetic, composite and empirical best linear unbiased prediction estimator, and apply them to real domestic data which is from the Survey of Hotels and Restaurants in In-Chon as of 1996 and then evaluate the performance of these methods by measuring average squared errors. This evaluation shows that indirect estimators, which are small area estimation methods, are more efficient direct estimator.

  • PDF

설계가중치를 이용한 유사 최량선형 비편향 예측

  • 신동윤;신민웅
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.161-164
    • /
    • 2004
  • You 와 Rao (2002)는 소지역 추정시 유사 최량선형 비편향 예측에서 설계 가중 값을 사용하는 방법을 발전시켰다. 특히 소지역 평균들을 추정하기 위하여 유사-최량선형 비편향 예측 추정량을 제안하였다. 우리는 소지역 추정에서 실용적으로 이용되는 몇 가지 추가적인 성질을 연구하였다.

  • PDF

Small Area Estimation Using Bayesian Auto Poisson Model with Spatial Statistics (공간통계량을 활용한 베이지안 자기 포아송 모형을 이용한 소지역 통계)

  • Lee, Sang-Eun
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.421-430
    • /
    • 2006
  • In sample survey sample designs are performed by geographically-based domain such as countries, states and metropolitan areas. However mostly statistics of interests are smaller domain than sample designed domain. Then sample sizes are typically small or even zero within the domain of interest. Shin and Lee(2003) mentioned Spatial Autoregressive(SAR) model in small area estimation model-based method and show the effectiveness by MSE. In this study, Bayesian Auto-Poisson Model is applied in model-based small area estimation method and compare the results with SAR model using MSE ME and bias check diagnosis using regression line. In this paper Survey of Disability, Aging and Cares(SDAC) data are used for simulation studies.