• Title/Summary/Keyword: 소재형상 설계

Search Result 132, Processing Time 0.033 seconds

Seismic Behavior and Performance Evaluation of Uckling-restrained Braced Frames (BRBFs) using Superelastic Shape Memory Alloy (SMA) Bracing Systems (초탄성 형상기억합금을 활용한 좌굴방지 가새프레임 구조물의 지진거동 및 성능평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.875-888
    • /
    • 2013
  • The researches have recently progressed toward the use of the superelastic shape memory alloys (SMAs) to develop new smart control systems that reduce permanent deformation occurring due to severe earthquake events and that automatically recover original configuration. The superelastic SMA materials are unique metallic alloys that can return to undeformed shape without additional heat treatments only after the removal of applied loads. Once the superelastic SMA materials are thus installed at the place where large deformations are likely to intensively occur, the structural system can make the best use of recentering capabilities. Therefore, this study is intended to propose new buckling-restrained braced frames (BRBFs) with superelastic SMA bracing systems. In order to verify the performance of such bracing systems, 6-story braced frame buildings were designed in accordance with the current design specifications and then nonlinear dynamic analyses were performed at 2D frame model by using seismic hazard ground motions. Based on the analysis results, BRBFs with innovative SMA bracing systems are compared to those with conventional steel bracing systems in terms of peak and residual inter-story drifts. Finally, the analysis results show that new SMA bracing systems are very effective to reduce the residual inter-story drifts.

Finite Element Analysis for the Forging Process Design of a Blind Rivet (블라인드 리벳의 단조공정설계를 위한 유한요소해석)

  • Byun, Hong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2577-2582
    • /
    • 2009
  • A rivet which can fasten two parts is one of an important mechanical elements. In this study, the process design of a blind revet is implemented using finite element method in order to manufacture it which can resist high vibration and has strong coherence between two parts. Considering plastic flow, ease of manufacture, high strength, material loss, and so forth, an optimal four-stage process is proposed by finite element analysis and process design rules. In addition, the finite element simulation results such as shape of the forged rivet, strain distribution and forging load are investigated for the usefulness of the forging process of the blind rivet. These results will be contributed to the forging process design and the die design of the blind rivet.

The development of Bundle Type Ploymer Phase to Phase Spacer For 345kV Power Transmission Line (345kV 2도체용 폴리머 상간스페이서 개발)

  • Kim, Wan-Jong;Park, Bong-Guy;Park, Kwang-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.331-332
    • /
    • 2008
  • 최근 엘리노 현상과 기상이변(태풍 및 폭설)으로 갤로핑 및 전선도약(Sleet jump) 등에 따른 송전선로 상간단락 고장의 우려가 날로 증가하고 있다. 특히 345kV급 간선계통의 상간단락 고장은 순간전압 강화 등 전기품질 저하로 이어질 수 있다. 이에 본 논문에서는 345kV 2도체용 폴리머 상간스페이서를 개발하여 상간단락고장에 대한 근본적인 예방책을 제시하였다. 폴리머용 345kV 절연 설계, 고강도 FRP ROD 설계 및 턴버클을 이용한 미세조정 장치 적용, 코로나 방지를 위한 코로나 링 채용 등을 통하여 최적의 345kV 2도체용 상간스페이서를 고안하였다. 또한 상간스페이서 소재의 성능 평가 및 해석을 위하여 Maxwell 2D Field Simulator를 이용하여 모델링하였으며 갓 형상에 따른 전계분포 해석과 FRP와 고무 계면에서의 전계분포 해석도 수행하였다.

  • PDF

A Study on the Helical Gear Forming by Cold Extrusion (냉간 압출에 의한 헬리컬 기어의 제조에 관한 연구)

  • 최재찬;조해용;권혁홍;한진철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.127-138
    • /
    • 1991
  • A gear forming method by cold extrusion and an analytical method with its numerical solution program based on the upper bound method were developed. In the analysis the involute curve was as a shape of die and the upper bound method was used to calculate energy dissipation rate. By this method the power requirement and optimum conditions necessary for extruding helical(spur) gear were successfully calculated. These numerical solutions are in good agreement with experimental data. In the experiment, 4-6 class helical gear of KS standard for automobile transmission was successfully manufactured.

Numerical Approach to Optimize Piercing Punch and Die Shape in Hub Clutch Product (허브클러치 제품의 피어싱 펀치 및 금형 형상 최적화를 위한 수치접근법)

  • Gu, Bon-Joon;Hong, Seok-Moo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.517-524
    • /
    • 2019
  • The overdrive hub clutch is attached to a 6-speed automatic transmission to reduce fuel consumption by using the additional power of the engine. This paper proposes a means to minimize the load and roll-over ratio on the punch during the piercing process for the overdrive hub clutch product. Die clearance, shear angle, and friction coefficient, which can affect the load and roll-over ratio of the punch during processing, were set as the design variables. Sensitivity analysis was also conducted to determine the influence of each design variable on the punch load and roll-over ratio. As a result, shear angle, friction coefficient and die clearance were found to be sensitive to load and roll-over ratio. The punch load and roll-over ratio were set as the objective function and the equation of each design variable and objective function was derives using the Response Surface Method. Finally, the optimal value of the design variables was derived using the Response Surface Method. Application of this model to finite element analysis resulted in 22.14% improvement in the roll-over ratio of the punch load and material.

고강도 GA(Galvanized Annealing)재의 표면특성과 내식성간 상관성 분석

  • Jeong, Bong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.125-125
    • /
    • 2017
  • 최근 들어 내수용 및 수출용 자동차 보증 제도를 살펴보면 부품에 대한 방식 보증기간이 점차 연장되는 추세이며, 이에 따라 자동차사에서 요구하는 방식 및 내식성 평가 기준이 상향되어 가고 있다. 실제로 수출차에 대한 방청 품질 보증기간이 차체 구멍 발청 10년에서 12년으로 연장할 움직임을 보이는 등 점차 방식에 대한 관심이 높아지고 있다. 따라서 내식성 향상에 대한 끊임없는 연구가 지속적으로 이루어지고 있으며, 내식성 향상을 위해 구조/형상 변화, 도장 품질 향상, 최적화 설계 등 다방면에서 노력을 기울이고 있다. 그 중에서도 가장 근본적인 해결책인 소재의 내식성 향상에 대한 관심은 날로 높아지고 있는 실정이다. 특히 일본 등지에서는 GA 도금재의 사용이 증가하고 있으나, 아직은 내식성에 대한 효율적이고 체계적인 관리가 부족한 면이 있다. GA재는 합금화 과정에서 야기되는 Fe% 합금화도, 합금화 상분율(감마, 델타, 제타상), crater 등 복잡한 소재의 특성으로 인해 소재의 내식성 분석에 고려할 사항이 많다. 실제 여러 실험들을 통해서 GA재가 내식성에 영향이 있는 인자들에 대해 많은 연구가 진행되었지만 명확히 정량화되어 있지 않은 관계로 GA재의 내식성 관리 기준에 대해서도 명확하진 않은 상황이다. 본 연구에서는 당사재와 타사재의 고강도 GA재 (>440 MPa) 11종에 대해 crater분율, zeta상, 합금화도, 도금량 등의 다양한 도금 물성들을 조사하였다. 또한 이 시편들을 34일 동안의 복합염수 분무법(CCT)을 통해 얻은 최대 및 평균 블리스터 폭과 소재 표면품질 물성과의 상관관계를 통해서 부식과 연관된 관련인자들을 도출하고 정량적인 관계를 살펴보았다. GA재의 경우 다양한 물성들 중에서 도금 크레이터, 제타상, 합금화도 순으로 내식성에 영향을 주는 것으로 확인이 되었으며 이 세 인자들을 내식성 평가 지수화하여 GA재 생산시 효율적인 관리범위를 지정하는데 이용 가능할 수 있도록 diagram을 도출하였다. 따라서, 본 연구를 통하여 자동차사에서 요구하는 내식성 기준을 만족하기 위한 내식성 상관 인자들의 관리 수준을 정량화함으로써 보다 우수한 소재의 관리를 할 수 있도록 하고자 한다.

  • PDF

A Study on the Compression Strength of Structural Steel Tube Applied in Spatial Structure (공간구조에 적용되는 일반구조용 강관의 압축내력에 관한 연구)

  • Baek, Ki-Youl
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.83-93
    • /
    • 2008
  • Space truss is a rational system which forming large span in spatial structure and the steel tube is used well as a structure member in truss system. This study includes coupon test and Stub-column compression test on the structural steel tube. The compression test of Stub-column was performed to characterize and quantify the material characteristic and strength of column. In this study, we also researched the matter of compatibility, in which we compared the experiment formula and the abstract formula by the application of the LSD standard formula, SSRC and ECCS multiple column curve.

  • PDF

Plan on the Analysis and Improvement of the Molding process of SCM435 bolt by use of the Finite Element Method (유한요소법을 이용한 SCM435 Bolt의 성형 공정에 관한 해석 및 공정 개선 방안)

  • Ahn, Kyo-Chul;Choi, Chui-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4950-4955
    • /
    • 2012
  • A bolt manufacturing process is completed with continuous forging. Technical and economical success of each process will depend on the appropriate process design and metal mold design for each procedure. This study aims to analyze the moldings of first and second steps among the multi-step molding processes of SCM435 bolt by use of the finite element method in order to achieve the reasonable process. Since the processes of first and second steps analyzed by use of the finite element method consist of axial symmetry, the transformed configuration of material satisfy the dimensions expected in process. In addition, the uniflow line formed in material becomes smooth and consistent over the entire process. Therefore neither molding of material nor inherent defect is expected.

Impact Energy Absorbing Capability of Metal/Polymer Hybrid Sheets (금속/폴리머 접합강의 충격 특성에 대한 실험적 연구)

  • Kong, Kyungil;Kwon, O Bum;Park, Hyung Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.137-142
    • /
    • 2017
  • Recently, the reduction of vehicle weight has been increasingly studied, in order to enhance the fuel efficiency of passenger cars. In particular, the seat frame is being studied actively, owing to considerations of driver safety from external impact damage. Therefore, this study focuses on high strength steel sheet (SPFC980)/polymer heterojunction hybrid materials, and their performance in regards to impact energy absorption. The ratio of impact energy absorption was observed to be relatively higher in the SPFC980/polymer hybrid materials under the impact load. This was found by calculating the equivalent flexural rigidity, which is the bending effect, according to the Castigliano theorem. An efficient wire-web structure was investigated through the simulation of different wire-web designs such as triangular, rectangular, octagonal, and hexagonal structures. The hexagonal wire-web structure was shown to have the least impact damage, according to the simulations. This study can be utilized for seat frame design for passengers' safety, owing to efficient impact absorption.

A Basic Study on the Design of the Flexible Keel in the Energy-Storage Prosthetic Foot for the Improvement of the Walking Performance of the Below Knee Amputees (하지 절단환자의 보행 능력 향상을 위한 에너지 저장형 의족의 유연 용골 설계를 위한 기초연구)

  • 장태성;이정주;윤용산;임정옥
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.519-530
    • /
    • 1998
  • In this paper, the basic study on the design of the flexible keel of the energy-storage prosthetic foot was performed in order to Improve the walking performance and Increase the activities of the below knee amputees. Based on the analysis of the anthropometric data and the normal gait on two dimensional sagittal plane available In the literature, we presented a model of the basic structure of the flexible keel of the prosthetic foot. The model of the basic structure was composed of the simple beams, and linear rotational spring and damper. Laminated carbon fiber-reinforced composites were selected as the material of the basic structure model of the flexible keel In order to apply the high strength and light weight materials to the basic structure of the flexible keel of the prosthetic foot. The recoverable strain energy In response to the change of beam shape was calculated bur the finite element analysis and it was suggested that the change of beam shape could be the design variable in flexible keel design. The simulation process was systematically designed by using orthogonal array table in order to design the flexible keel structure which could store the more recoverable strain energy. finite element analysis was carried but according to the design of simulations by using the finite element program ABAQUS and the flexible keel structure of the energy-storage prosthetic foot was obtained from the analysis of variance(ANOVA). The dynamic simulation model of the prosthetic walking using the flexible keel structure was made and the dynamic analysis was carried but during one walk cycle. Based on the above results, an effective design process was presented for the development of the prosthetic fool system.

  • PDF