• Title/Summary/Keyword: 소요환기량

Search Result 46, Processing Time 0.021 seconds

A study on the effects of exhaust emission standards on the required ventilation rate in vehicle tunnels (차량 배출가스 규제기준이 소요환기량에 미치는 연구)

  • Kim, Hyo-Gyu;Ryu, Ji-Oh;Song, Seog-Hun;Jung, Chang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.409-420
    • /
    • 2017
  • The amount of ventilation required in making the tunnel ventilation plan is an important factor for determining the capacity of the ventilation system. The amount of pollutant emission for each type of vehicle (basic emission amount for the design of ventilation volume) for estimating the required ventilation amount is based on the 'Standard for Allowing the Emission for the car manufacturing', proposed by Ministry of Environment. However, in 2013, the Ministry of Environment announced the 'Regulations on the calculation method of total emissions from vehicles' as a regulation for calculating the pollutants emitted from vehicles. In this regulation, there are the 'Emission factors for each type of vehicle'. Therefore, it is necessary to review the application of the Regulation to the estimation of the required ventilation volume for the road tunnel. In this study, the influence of the strengthened emission regulation in 2015 caused by the case of manipulation of emission volume for the diesel vehicle on the calculation of the required ventilation volume in the road tunnel has been checked. In addition, in this study, the required ventilation volume calculated according to the Standard for Allowing the Emission for the car manufacturing revised by Ministry of Environment and "Emission factors for each type of vehicle" and that calculated according to the EURO emission standard were compared for analysis. This study has implications that it provides the basic design data for calculating the reasonable ventilation capacity of the ventilation system based on the ground for calculating the required ventilation volume.

A Study on a Graphical Method for Determining the Characteristics of Jet-fan Ventilation System using the Contour Map of Required Ventilation Rate in Local Highways (지역별 소요환기량 특성도를 활용한 제트팬 환기방식 가능 터널제원 결정연구)

  • 김효규;김화수;김종대;이창우
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.235-243
    • /
    • 2003
  • Recent worldwide trends show that tunnel length is getting longer, and the demand for longitudinal ventilation system with jet-fans in highway tunnels has also increased mainly due to the economic reasons. Improvements in vehicle engine subsequently reduced required ventilation rate(Qreq) which is the decisive factor in choosing the optimal ventilation system. Qreq contour map is a graph that defines the relationship among tunnel length, grade and required ventilation rate. It is important to understand the variation of Qreq in order to evaluate the characteristics of ventilation system with jet fans. Therefore this study aims at studying a graphical method for determining the characteristics of jet-fm ventilation system using Qreq contour map. Also, this study focuses on traffic composition on local highways.

A study on the ventilation characteristics and design of transverse ventilation system for road tunnel (도로터널 횡류환기방식의 환기특성 및 시스템 설계 관한 연구)

  • Ryu, Ji-Oh;Kim, Hyo-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.305-315
    • /
    • 2018
  • In this study, the ventilation characteristics and the relationships between the required ventilation flow rate and the ventilation system flow rate was investigated by numerical method for the optimum design of the transverse ventilation and semi-transverse ventilation system in road tunnels. The following results were obtained. In supply exhaust transverse ventilation system, the system supply-exhaust air flow rate is theoretically equal to the difference between the required ventilation flow rate and natural ventilation flow rate. However, it is shown that it increases by about 10% in the analysis results. And, in the case of the longitudinal air flow rate is increased by installed jet fans, ventilation system air flow rate is reduced. However, as the longitudinal air flow rate increases, the concentration of pollutants in the tunnel decreases, so the exhaust effect of pollutants decreases, and the effect of reducing the system air flow rate is decreased. In case of semi-transverse with only air supply, ventilation system air flow rate is equal to required ventilation air flow rate when tunnel inlet velocity is negative, but results is shown it is increased within about 13.3%. Also, it was found that ventilation effect can not be expected even if the jet fans are increased when the tunnel inlet velocity is negative.

The effects of introduction of diesel passenger cars on the ventilation requirements for road tunnels (경유승용차 도입이 터널 소요환기량에 미치는 영향분석)

  • Kim, Hyo-Gyu;Song, Seok-Hun;Kim, Nam-Young;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.309-321
    • /
    • 2007
  • Since the first diesel passenger car hit the local road in late 2005, the share of diesel cars is growing significantly; possibly up to the level as in the western Europe. In this study, the effects of introduction of diesel passenger cars on the ventilation rate and facility capacity are analyzed for the three individual cases with different basic exhaust rate based on the vehicle age, the vehicle class percentage and the smoke exhaust rate. The target tunnel for this comparative study is a typical 2 km-long 2-lane highway tunnel. Case 1 assuming the current local design standards and the diesel vehicles comprising 40% of the total passenger cars on the road required more ventilation rate and facility capacity than in the case only with the current standards. Case 2 which is the real tunnel currently in the designing stage taking into account the vehicle age but ignoring the diesel vehicle ratio, and Case 3 on the contrary considering the both factors show similar level of ventilation characteristics as EURO-3 emission regulation. Application of the emission standard set by the Ministry of Environment for newly manufactured vehicles in the current local tunnel design standard indicates higher requirements than for EURO-2 regulation, whereas the emission standard came into effect in 2006 results in the ventilation characteristics similar to EURO-4. This study aims at providing fundamental information for assessing the basic emission rate and determining the optimal ventilation rate and facility capacity considering the growing percentage of diesel cars and gradually decreasing level of smoke emission forced by the relevant laws.

  • PDF

A study on the effects of changes in the estimating criteria for ventilation requirements in road tunnels (도로터널 소요환기량 산정기준 변화에 따른 영향 분석)

  • Kim, Hyo-Gyu;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.779-793
    • /
    • 2019
  • The ventilation rate (Qreq) requirement in road tunnels is not just a basic information for determining the tunnel cross-sectional area, but also a major factor for the ventilation system selection. The Qreq is predominantly dependent on the vehicle traffic volume, while among others, the vehicle exhaust emissions and permissible standards are critical. This paper analyzes the changes in the Qreq designing criteria and/or recommendations suggested by World Road Association and local authorities over the last 20 years, since the first local designing criteria was established in 1997 by Korea Expressway Corporation. Additionally, based on the updated vehicle emission standards of Ministry of Environment and recent recommendations of the World Road Association (WRA), changes in the Qreq and its effects are studied in terms of the length and grade of the tunnel.

The Study on Optimum Ventilation System during Long Tunnel Construction (굴착중인 장대터널내 최적의 환기시스템에 대한 연구)

  • Oh, Byung-Hwa;Lim, Han-Uk
    • Explosives and Blasting
    • /
    • v.24 no.2
    • /
    • pp.9-22
    • /
    • 2006
  • In general, tunnel construction except for special cases such as very short tunnels must require an artificial ventilation system. Especially, it is efficient for long tunnels to use the combination of a proper ventilation system according to the progress of the excavation. Neung-Dong Tunnel of which length is 4,580m has been originally designed as using ventilation system of blower and exhaust mixture types. Since it has been expected to result in some problems, its design Is analyzed to find the way to improve ventilation system by estimating the amount of required fresh air, considering various ventilation mixture types, ventilation's fluidity analysis and contaminant's distribution by numerical analysis. Economical efficiency for each type is also reviewed to determine the best ventilation system.

The Estimation and Application of Optimum Design Variables for Road Tunnel Ventilation System Based on Statistical Analysis (통계적 분석을 이용한 터널 환기시스템 적정설계변수의 산정 및 적용에 관한 연구)

  • 이보영;유용호;김진
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.373-380
    • /
    • 2004
  • In this study, the emission rate of pollutant was modified according to the published standards, and the distribution of pollutant concentration was analyzed for each vehicle velocity. This modified emission rate was applied to a model tunnel and it was proved that the required air quantity was reduced to 49%, compared to the PIARC method. From the simulation result, it was proved by using statistics that the most sensitive factor among them is the friction coefficient and it was modified to the value in the range of 0.018 to 0.021. It is also expected that the required air quantity can be decreased form 14.4% to 19.2% according as the coefficient is applied to the domestic model tunnels. In conclusion, it is proposed that the number of jet fans can be reduced and the annual operating cost can be curtailed as well.

A Study on Optimum Ventilation System in the Deep Coal Mine (심부 석탄광산의 환기시스템 최적화 연구)

  • Kwon, Joon Uk;Kim, Sun Myung;Kim, Yun Kwang;Jang, Yun Ho
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.186-198
    • /
    • 2015
  • This paper aims for the ultimate goal to optimize the work place environment through assuring the optimal required ventilation rate based on the analysis of the airflow. The working environment is deteriorated due to a rise in temperature of a coal mine caused by increase of its depth and carriage tunnels. To improve the environment, the ventilation evaluation on J coal mine is carried out and the effect of a length of the tunnel on the temperature to enhance the ventilation efficiency in the subsurface is numerically analyzed. The analysis shows that J coal mine needs $17,831m^3/min$ for in-flow ventilation rate but the total input air flowrate is $16,474m^3/min$, $1,357m^3/min$ of in-flow ventilation rate shortage. The temperatures were predicted on the two developed models of J mine, and VnetPC that is a numerical program for the flowrate prediction. The result of the simulation notices the temperature in the case of developing all 4 areas of -425ML as a first model is predicted 29.30 at the main gangway 9X of C section and in the case of developing 3 areas of -425ML excepting A area as a second model, it is predicted 27.45 Celsius degrees.

A Case Study on the Ventilation and Heat Environment in a Underground Limestone Mine with Rampway (Rampway 설치 석회석 광산내 환기 현황 및 열환경 분석 사례연구)

  • Kim, Doo-Young;Lee, Seung-Ho;Jeong, Kyu-Hong;Lee, Chang-Woo
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.163-172
    • /
    • 2012
  • As more diesel engines have been employed in underground limestone mines with large cross section, underground space environment is worsened by diesel exhausts and heat flow. This paper aims for the ultimate goal to optimize the work place environment through assuring the optimal required ventilation rate based on the analysis of the airflow, diesel exhaust gas concentrations and the effects of mechanization and deepening working face on temperature and humidity. Due to the insufficient capacity of the main exhaust fan and poor airway management, stagnant airflows were observed at various locations, while the flow direction was reversed instantly with passing diesel equipment and the flow reversal was also made by the seasonal variation of the outside surface weather. During the loading operation, CO concentration measurements were found to be frequently higher than the threshold limit of 50 ppm, and most of the $NO_2$ measurements during drilling and loading operations shows even more serious levels surpassing the permissible limit of 3 ppm. The actual ventilation quantity was considerably less than the required quantity estimated by the mine health and safety law, and this shortage problem was less serious in colder winter showing more effectiveness of the natural ventilation.

공기대 공기 에너지 회수

  • 한화택
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.29 no.8
    • /
    • pp.50-58
    • /
    • 2000
  • 실내공기질과 환기풍량 그리고 HVAC 관련 비틀은 서로 밀접한 관계가 있다. 공기대 공기 열 교환기를 이용하여 급기를 가열 또는 냉각함으로써 제습이나 가습의 필요성을 크게 줄일 수 있다. HVAC 설치 및 운전비용을 결정하는 가장 중요한 요소는 소요환기량, 기후변수, 열교환기 성능변수 그리고 운전기간 등이다.

  • PDF