• Title/Summary/Keyword: 소속함수

Search Result 421, Processing Time 0.026 seconds

Study on Fuzzy Control of Electric Car via TMS320F240 (TMS320F240 칩을 이용한 전동차의 퍼지 주행 제어기에 대한 연구)

  • Son, J.W.;Choi, S.M.;Song, D.K.;Kim, J.K.;Bae, J.I.;Lee, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2381-2383
    • /
    • 1998
  • 직류직권모터는 전동지게차와 같은 물류용 전동차에서 사용되는데, 우수한 기동 토오크를 가지는 반면에 파라미터의 열적, 변화가 심하고 마찰과 부하의 비선형성이 존재해 기존의 제어기로는 만족할 만한 성능을 내지 못한다. 본 논문에서는 이를 해결하기 위해 퍼지제어기를 사용한다. 퍼지제어기는 변수의 애매성에 바탕을 두고 제어하기 때문에 이러한 비선형성에 대해 강인하나, 소속함수의 결정과 퍼지규칙의 선정이 어려우며, 체계적인 방법이 존재하지 않는다. 이러한 퍼지제 어의 결점을 해결하기 위해 소속함수는 유전 알고리즘을 통해 자기동조 시키며 퍼지규칙은 오차와 오차변화율의 위상평면을 이용하여 결정한다. 실용성을 검증하기 위해 TI사의 DSP TMS320F240을 이용해 실시스템에 적용했으며, 이를 통해 부하의 변동 및 기준 속도의 변화에도 잘 대처함을 알 수가 있었다.

  • PDF

Reliability Analysis of Fuzzy Systems With Weighted Components Using Vague Sets (모호집합을 이용한 가중 구성요소를 갖는 퍼지시스템의 신뢰도 분석)

  • Cho, Sang-Yeop;Park, Sa-Joon
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.979-985
    • /
    • 2006
  • In the conventional researches, the reliabilities of the fuzzy system are represented and analyzed by real values between zero and one, fuzzy numbers, intervals of confidence, etc. In this paper, we present a method to represent and analyze the reliabilities of the weighted components of the fuzzy system and the weights reflected on their importance based on vague sets defined in the universe of discourse [0, 1]. The vague set is represented as the interval consisted of the truth-membership functions and the false-membership functions, therefore it can allow the reliabilities and the weights of a fuzzy system to represent in a more flexible manner. The proposed method considers the weights of the weighted components in the fuzzy systems, its reliability analysis is more flexible and effective than the conventional methods.

Fuzzy Rule Generation and Building Inference Network using Neural Networks (신경망을 이용한 퍼지 규칙 생성과 추론망 구축)

  • 이상령;이현숙;오경환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.43-54
    • /
    • 1997
  • Knowledge acquisition is one of the most difficult problems in designing fuzzy systems. As application domains of fuzzy systems become larger and more complex, it is more difficult to find the relations among the system's input- outpiit variables. Moreover, it takes a lot of efforts to formulate expert's knowledge about complex systems' control actions by linguistic variables. Another difficulty is to define and adjust membership functions properly. Soin conventional fuzzy systems, the membership functions should be adjusted to improve the system performance. This is time-consuming process. In this paper, we suggest a new approach to design a fuzzy system. We design a fuzzy system using two neural networks, Kohonen neural network and backpropagation neural network, which generate fuzzy rules automatically and construct inference network. Since fuzzy inference is performed based on fuzzy relation in this approach, we don't need the membership functions of each variable. Therefore it is unnecessary to define and adjust membership functions and we can get fuzzy rules automatically. The design process of fuzzy system becomes simple. The proposed approach is applied to a simulated automatic car speed control system. We can be sure that this approach not only makes the design process of fuzzy systems simple but also produces appropriate inference results.

  • PDF

GIS-based Data-driven Geological Data Integration using Fuzzy Logic: Theory and Application (퍼지 이론을 이용한 GIS기반 자료유도형 지질자료 통합의 이론과 응용)

  • ;;Chang-Jo F. Chung
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.243-255
    • /
    • 2003
  • The mathematical models for GIS-based spatial data integration have been developed for geological applications such as mineral potential mapping or landslide susceptibility analysis. Among various models, the effectiveness of fuzzy logic based integration of multiple sets of geological data is investigated and discussed. Unlike a traditional target-driven fuzzy integration approach, we propose a data-driven approach that is derived from statistical relationships between the integration target and related spatial geological data. The proposed approach consists of four analytical steps; data representation, fuzzy combination, defuzzification and validation. For data representation, the fuzzy membership functions based on the likelihood ratio functions are proposed. To integrate them, the fuzzy inference network is designed that can combine a variety of different fuzzy operators. Defuzzification is carried out to effectively visualize the relative possibility levels from the integrated results. Finally, a validation approach based on the spatial partitioning of integration targets is proposed to quantitatively compare various fuzzy integration maps and obtain a meaningful interpretation with respect to future events. The effectiveness and some suggestions of the schemes proposed here are illustrated by describing a case study for landslide susceptibility analysis. The case study demonstrates that the proposed schemes can effectively identify areas that are susceptible to landslides and ${\gamma}$ operator shows the better prediction power than the results using max and min operators from the validation procedure.

Improvement of Control Performance of Array-Sensor System Using Soft Computing (Soft Computing을 이용한 배열 센서 시스템의 제어 성능 개선)

  • Na, Seung-You;Ahn, Myung-Kook
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.79-87
    • /
    • 2003
  • In this paper, we propose a method to obtain a linear characteristic using soft computing for systems which have array sensors of nonlinear characteristics. Also a procedure utilizing the pattern information of array sensors without additional sensors is proposed to reduce disturbance effects. For a typical example, even a single CdS cell for CdS array has nonlinear characteristics. Overall linear characteristic for CdS array is obtained using fuzzy logic for each cell and overlapped portion. In addition, further improvement for linearization is obtained applying genetic algorithms for the parameters of membership functions. Also the effect of disturbing external light changes to the CdS array can be reduced without using any additional sensors for calibration. The proposed method based on fuzzy logic shows improvements for position measurements and disturbance reduction to external light changes due to the fuzziness of the shadow boundary as well as the inherent nonlinearity of the CdS array. This improvement is shown by applying the proposed method to the ball position measurements of a magnetic levitation system.

Design of the Fuzzy Traffic Controller by the Input-Output Data Clustering (입출력 데이터 클러스터링에 의한 퍼지 교통 제어기의 설계)

  • 지연상;최완규;이성주
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.241-245
    • /
    • 2001
  • The existing fuzzy traffic controllers construct the rule-base based on the intuitive knowledge and experience or the standard rule-base, but the rule-base constructed by the above methods has difficulty in representing exactly and detailedly the control knowledge of the export and the operator. Therefore, in this paper, we propose a method that can improve the performance of the fuzzy traffic control by designing the fuzzy traffic controller which represents the control knowledge more exactly. The proposed method so modifies the position and shape of the fuzzy membership function based on the input-output data clustering that the fuzzy traffic controller can represent the control knowledge more exactly. Our method use the rough control knowledge based on intuitive knowledge and experience as the evaluation function for clustering the input-output data. The fuzzy traffic controller designed by the our method could represent the control knowledge of the expert and the operator more exactly, and it outperformed the existing controller in terms of the number of passed vehicles and the wasted green-time.

  • PDF

Function Approximation for Reinforcement Learning using Fuzzy Clustering (퍼지 클러스터링을 이용한 강화학습의 함수근사)

  • Lee, Young-Ah;Jung, Kyoung-Sook;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.587-592
    • /
    • 2003
  • Many real world control problems have continuous states and actions. When the state space is continuous, the reinforcement learning problems involve very large state space and suffer from memory and time for learning all individual state-action values. These problems need function approximators that reason action about new state from previously experienced states. We introduce Fuzzy Q-Map that is a function approximators for 1 - step Q-learning and is based on fuzzy clustering. Fuzzy Q-Map groups similar states and chooses an action and refers Q value according to membership degree. The centroid and Q value of winner cluster is updated using membership degree and TD(Temporal Difference) error. We applied Fuzzy Q-Map to the mountain car problem and acquired accelerated learning speed.

Data Mining Algorithm Based on Fuzzy Decision Tree for Pattern Classification (퍼지 결정트리를 이용한 패턴분류를 위한 데이터 마이닝 알고리즘)

  • Lee, Jung-Geun;Kim, Myeong-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.11
    • /
    • pp.1314-1323
    • /
    • 1999
  • 컴퓨터의 사용이 일반화됨에 따라 데이타를 생성하고 수집하는 것이 용이해졌다. 이에 따라 데이타로부터 자동적으로 유용한 지식을 얻는 기술이 필요하게 되었다. 데이타 마이닝에서 얻어진 지식은 정확성과 이해성을 충족해야 한다. 본 논문에서는 데이타 마이닝을 위하여 퍼지 결정트리에 기반한 효율적인 퍼지 규칙을 생성하는 알고리즘을 제안한다. 퍼지 결정트리는 ID3와 C4.5의 이해성과 퍼지이론의 추론과 표현력을 결합한 방법이다. 특히, 퍼지 규칙은 속성 축에 평행하게 판단 경계선을 결정하는 방법으로는 어려운 속성 축에 평행하지 않는 경계선을 갖는 패턴을 효율적으로 분류한다. 제안된 알고리즘은 첫째, 각 속성 데이타의 히스토그램 분석을 통해 적절한 소속함수를 생성한다. 둘째, 주어진 소속함수를 바탕으로 ID3와 C4.5와 유사한 방법으로 퍼지 결정트리를 생성한다. 또한, 유전자 알고리즘을 이용하여 소속함수를 조율한다. IRIS 데이타, Wisconsin breast cancer 데이타, credit screening 데이타 등 벤치마크 데이타들에 대한 실험 결과 제안된 방법이 C4.5 방법을 포함한 다른 방법보다 성능과 규칙의 이해성에서 보다 효율적임을 보인다.Abstract With an extended use of computers, we can easily generate and collect data. There is a need to acquire useful knowledge from data automatically. In data mining the acquired knowledge needs to be both accurate and comprehensible. In this paper, we propose an efficient fuzzy rule generation algorithm based on fuzzy decision tree for data mining. We combine the comprehensibility of rules generated based on decision tree such as ID3 and C4.5 and the expressive power of fuzzy sets. Particularly, fuzzy rules allow us to effectively classify patterns of non-axis-parallel decision boundaries, which are difficult to do using attribute-based classification methods.In our algorithm we first determine an appropriate set of membership functions for each attribute of data using histogram analysis. Given a set of membership functions then we construct a fuzzy decision tree in a similar way to that of ID3 and C4.5. We also apply genetic algorithm to tune the initial set of membership functions. We have experimented our algorithm with several benchmark data sets including the IRIS data, the Wisconsin breast cancer data, and the credit screening data. The experiment results show that our method is more efficient in performance and comprehensibility of rules compared with other methods including C4.5.

Design of a Model-Based Fuzzy Controller for Container Cranes (컨테이너 크레인을 위한 모델기반 퍼지제어기 설계)

  • Lee, Soo-Lyong;Lee, Yun-Hyung;Ahn, Jong-Kap;Son, Jeong-Ki;Choi, Jae-Jun;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.459-464
    • /
    • 2008
  • In this paper, we present the model-based fuzzy controller for container cranes which effectively performs set-point tracking control of trolley and anti-swaying control under system parameter and disturbance changes. The first part of this paper focuses on the development of Takagi-Sugeno (T-S) fuzzy modeling in a nonlinear container crane system. Parameters of the membership functions are adjusted by a RCGA to have same dynamic characteristics with nonlinear model of a container crane. In the second part, we present a design methodology of the model-based fuzzy controller. Sub-controllers are designed using LQ control theory for each subsystem in fuzzy model and then the proposed controller is performed with the combination of these sub-controllers by fuzzy IF-THEN rules. In the results of simulation, the fuzzy model showed almost similar dynamic characteristics compared to the outputs of the nonlinear container crane model. Also, the model-based fuzzy controller showed not only the fast settling time for the change in parameter and disturbance, but also stable and robust control performances without any steady-state error.

Multi-objective Optimization of Fuzzy System Using Membership Functions Defined by Normed Method (노음방법에 의해 정의된 소속함수를 사용한 퍼지계의 다목적 최적설계)

  • 이준배;이병채
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1898-1909
    • /
    • 1993
  • In this paper, a convenient scheme for solving multi-objective optimization problems including fuzzy information in both objective functions and constraints is presented. At first, a multi-objective problem is converted into single objective problem based on the norm method, and a merbership function is constructed by selecting its type and providing the parameters defined by the norm method. Finally, this fuzzy programming problem is converted into an ordinary optimization problem which can be solved by usual nonlinear programming techniques. With this scheme, a designer can conveniently obtain pareto optimal solutions of a fuzzy system only by providing some parameters corresponding to the importance of the objectiv functions. Proposed scheme is simple and efficient in treating multi-objective fuzzy systems compared with and method by with membership function value is provided interactively. To show the validity of the scheme, a simple 3-bar truss example and optimal cutting problem are solved, and the results show that the scheme is very useful and easy to treat multi-objective fuzzy systems.