• 제목/요약/키워드: 소셜 마이닝

검색결과 219건 처리시간 0.031초

R을 이용한 성경 데이터의 빈도와 소셜 네트워크 분석 (Frequency and Social Network Analysis of the Bible Data using Big Data Analytics Tools R)

  • 반재훈;하종수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.93-96
    • /
    • 2018
  • 데이터를 저장하고 분석하여 새로운 지식을 얻을 수 있는 빅데이터 처리기술은 사회의 여러 분야에서 중요성이 강조되고 있으며 정보통신기술 분야의 핵심 이슈로 부각되면서 관련 기술에 대한 관심이 증가하고 있다. 이러한 빅데이터를 분석할 수 있는 도구인 R은 통계 기반의 정보 분석을 가능하게 하는 언어와 환경이다. 본 논문에서는 이를 이용하여 성경데이터를 분석한다. R을 이용하여 어떠한 텍스트가 분포되어 있는지를 빈도 조사를 수행하며 소셜 네트워크 분석을 통해 성경을 분석한다.

  • PDF

선거방송을 위한 선거후보 당선자 예측 어플리케이션 - 제 20 대 국회의원 선거에 적용한 연구 - (Application for Predicting Candidate on Election Broadcasting - A Case Study on the 20th Assembly Election -)

  • 양근석;구진원;노민철;신용우
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.95-98
    • /
    • 2016
  • 민주주의의 꽃, 제 20 대 국회의원 선거가 막을 내렸다. 지난 선거에서는 방송사뿐만 아니라 정당들도 엄청난 비용 지출과 노력이 소요되었다. 한 예로, 지난 4. 13 총선거 (제 20 대 국회의원)에서 방송 3 사 출구조사 비용으로 약 66 억원 이상이 지출됐다. 그리고 정당에서는 여론조사 비용으로 약 70 억원 이상을 지출했다. 이러한 큰 비용 지출과, 담당자들의 노력을 줄이기 위해 본 논문에서는 텍스트 마이닝과 감정분석을 적용한 후보 당선자 예측 어플리케이션을 제안한다. 첫째, 소셜 그래프 모델을 소개하여 지역 구조를 발견한다. 둘째, 텍스트 마이닝 기법을 이용하여, 후보자 관련 데이터를 가공한다. 셋째, 텍스트 감정 분석을 통해 후보자의 정보를 수치화 한다. 본 논문의 성능과 효율성을 평가하기 위해, 제 20 대 국회의원 선거에 사례연구를 진행하였다. 제안한 방법이 정확도와 수학적 통계 검증을 통해 가치 있는 효율성을 보였다. 선거방송을 위한 후보자 예측 도구의 도입으로 향후 선거(방송)에서의 큰 비용과 노력을 줄이는데 도움을 줄 것이라 기대한다.

  • PDF

국내 갑상선암 연구 주제 동향 분석 (A Study on Research Topics for Thyroid Cancer in Korea)

  • 양지연;신승혁;허성민;이태경
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.409-410
    • /
    • 2019
  • 본 논문에서는 국내 갑상선암의 연구 동향을 파악하기 위해 텍스트 중심의 접근법을 제안한다. 국내 갑상선암은 2000년대에 들어서며 발생이 급증하여 과잉진단의 논란을 불러일으켰으나, 다양한 분야의 자정 노력으로 수술 환자수가 크게 줄었다. 본 연구에서는 텍스트 마이닝 기술을 사용하여 디비피아에 등록되어 있는 갑상선암 관련 논문의 키워드와 초록을 수집하여 분석하였다. 1980년대는 대부분의 사례보고가 있었고 1990년대에 들어서면서 검진을 통한 조기 진단의 내용이 자주 나타났다. 2000년대에는 여러 장비들을 활용한 검사방법과 미세한 암의 발견에 대한 논의가 증가하였음을 확인 할 수 있었다. 2010년대에 들어서는 환자의 삶의 질에 대한 연구가 많이 이루어졌다. 지난 수십 년 동안 갑상선 암 연구 주제에 대해 뚜렷한 변화가 나타났으며, 향후 연구의 기초자료로 활용될 수 있으리라 기대된다.

  • PDF

텍스트 마이닝(text mining) 기법을 활용한 서브버시브 베이식(subversive basics) 패션의 특성 (Evaluating the Characteristics of Subversive Basic Fashion Utilizing Text Mining Techniques)

  • 임민정
    • 패션비즈니스
    • /
    • 제27권5호
    • /
    • pp.78-92
    • /
    • 2023
  • Fashion trends are actively disseminated through social media, which influences both their propagation and consumption. This study explored how users perceive subversive basic fashion in social media videos, by examining the associated concepts and characteristics. In addition, the factors contributing to the style's social media dissemination were identified and its distinctive features were analyzed. Through text mining analysis, 80 keywords were selected for semantic network and CONCOR analysis. TF-IDF and N-gram results indicate that subversive basic fashion involves transformative design techniques such as cutting or layering garments, emphasizing the body with thin fabrics, and creating bold visual effects. Topic modeling suggests that this fashion forms a subculture that resists mainstream norms, seeking individuality by creatively transforming the existing garments. CONCOR analysis categorized the style into six groups: forward-thinking unconventional fashion, bold and unique style, creative reworking, item utilization and combination, pursuit of easy and convenient fashion, and contemporary sensibility. Consumer actions, linked to social media, were shown to involve easily transforming and pursuing personalized styles. Furthermore, creating new styles through the existing clothing is seen as an economic and creative activity that fosters network formation and interaction. This study is significant as it addresses language expression limitations and subjectivity issues in fashion image analysis, revealing factors contributing to content reproduction through user-perceived design concepts and social media-conveyed fashion characteristics.

소셜 분석을 통한 사전제작 드라마의 가능성과 한계에 관한 연구 -jtbc <맨투맨>을 중심으로- (A Study on the Potential and Limitation of Pre-producing Dramas through Social Analysis -focusing on a jtbc drama -)

  • 김경애;구진희
    • 한국산학기술학회논문지
    • /
    • 제19권2호
    • /
    • pp.164-172
    • /
    • 2018
  • 본 논문은 드라마 사전제작과 스토리텔링의 관련성을 소셜 분석을 통해 살펴보고, 드라마의 스토리텔링이 어떤 점에 주안점을 두고 구조화되어야 할지를 jtbc의 <맨투맨>을 중심으로 살폈다. 사전제작 드라마에 대한 시청자들의 생각을 읽어내기 위해 뉴스를 배제하고 한 가지 주제에 집중하여 글을 올리는 블로그를 대상으로 하였으며, 사전제작과 드라마라는 단어를 포함한 2016. 12. 15~2017. 12. 15 사이의 블로그 67개를 선정하여 텍스트 마이닝을 수행하였다. 또한 사전제작 드라마이면서 작품의 스토리텔링에 문제를 지닌 것으로 판단되는 드라마 <맨투맨>에 대한 감성분석을 수행하였다. 블로그 텍스트 추출과 텍스트 마이닝은 OutWit Hub와 R을 이용하여 분석하였고, 좀 더 방대한 데이터를 대상으로 감성 분석을 하기 위해 소셜 메트릭스에서 제공하는 도구를 활용하였다. 감성분석 결과, <맨투맨>에서 시청자들은 김설우와 차도하의 로맨스에 공감하지 못했고 그것이 여성인물의 개연성 부족에서 비롯되었다는 해석이 도출되었다. 따라서 드라마의 성패는 사전제작 여부에 달려있는 것이라기보다 기획부터 제작에 이르는 스토리텔링의 과정이 얼마나 치밀하고 시청자의 공감을 얻도록 구조화되어 있느냐에 달려있다는 결론을 얻었다. 이러한 연구는 디지털 중심 스토리텔링 연구의 기반을 조성하고 문화 콘텐츠 산업의 전망과 이에 대한 교육을 수행하는 데 중요한 자료가 될 수 있으므로 앞으로도 지속적인 연구가 필요할 것이다.

빅 데이터를 이용한 소셜 미디어 분석 기법의 활용 (Utilization of Social Media Analysis using Big Data)

  • 이병엽;임종태;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제13권2호
    • /
    • pp.211-219
    • /
    • 2013
  • 빅 데이터를 활용한 분석 방법은 빅 데이터를 처리 할 수 있는 기술 기반으로 발전되어 오고 있다. 많은 IT 리서치 기관들이 빅 데이터를 통한 새로운 분석의 패러다임을 예견하고 있고, 또한 IT 벤더들을 중심으로 빅 데이터 처리를 위한 표준 기술들을 제시하고 있다. 빅 데이터는 IT 기기 및 환경의 발달과도 상호연관적이고 소셜 미디어를 주측으로 기존에 예측하지 못하는 비정형화된 데이터들을 정형화 하여, 이에 따른 다양한 분석, 예측 및 최적화에 초점이 맞추어 발달 하고 있다. 과거의 분석 기법은 정형화된 데이터를 기반으로 데이터 마이닝, OLAP, 통계 분석등을 통한 의사결정 도구로서 사용되어 왔다. 하지만 최근 빅데이터를 이용한 새로운 분석의 패러다임을 통해 분석기법의 다양화, 비정형 데이터 분석 등 새로운 형태의 기반 기술발전과 다양한 형태의 데이터를 통한 새로운 분석을 통해 통찰력을 높일 수 있다. 더욱이 고성능의 컴퓨팅 환경들의 발달과 표준화된 대용량 데이터 처리 기술 발달이 향후 조금 더 다양한 형태의 분석패턴을 만들어 갈 것이다. 따라서 본 논문은 빅 데이터를 통해 분석 가능한 다양한 기법을 알아보고, 기존의 데이터 마이닝 분석 기법을 통한 소셜 미디어의 분석 형태에 대한 활용 및 분석방안을 제시 하였다.

4차 산업혁명에 대한 인식 변화 비교 분석: 소셜 미디어 데이터 분석을 중심으로 (A Comparative Analysis of the Changes in Perception of the Fourth Industrial Revolution: Focusing on Analyzing Social Media Data)

  • 유재은;최종우
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권11호
    • /
    • pp.367-376
    • /
    • 2020
  • 4차 산업혁명은 빅데이터, 인공지능 등의 기술을 통해 사물들이 지능화 사회로 진입하는데 크게 기여한다. 혁명을 통해 인간의 행태와 인지를 파악할 수 있게 되었고, 인공지능의 활용을 통해 의료, 과학 등 다양한 분야에서 핵심 도구로서 자리매김하였다. 그러나 4차 산업혁명에는 긍정적인 미래와 함께 부정적인 이면이 자리 잡고 있다는 점에 주목하여, 본 연구에서는 소셜 미디어를 통해 수집된 비정형적인 빅데이터를 기반으로 텍스트 마이닝 기법을 활용한 분석을 실시하였다. 연도별(2016년, 2017년, 2018년) 4차 산업혁명과 관련된 키워드를 살펴보고, 각 키워드가 가지고 있는 의미에 대해 파악하고자 하였다. 또한, 연도의 변화에 따라 4차 산업혁명과 관련된 키워드가 어떻게 변화하는지 파악하였으며, R을 활용하여 키워드 연관 분석(Association Analysis)을 실시함으로써 4차 산업혁명과 연관된 키워드 흐름을 통해 4차 산업혁명과 밀접하게 연관된 인식 흐름을 알아보고자 하였다. 마지막으로 연도별 4차 산업혁명과 관련한 긍정적, 부정적인 감정을 살펴봄으로써 4차 산업혁명에 대한 사람들의 인식을 파악하였다. 분석결과, 부정적인 의견은 연마다 감소하고 있었으며 긍정적인 전망과 미래가 더 많아지는 것으로 나타났다.

소셜 빅데이터를 활용한 한국관광 트렌드에 관한연구 -감성분석을 중심으로- (A study on Korean tourism trends using social big data -Focusing on sentiment analysis-)

  • 최연희;유경미
    • 문화기술의 융합
    • /
    • 제10권3호
    • /
    • pp.97-109
    • /
    • 2024
  • 국내관광 영역에서 관광 소비 주체인 외래관광객과 내국인에 대한 관광 트렌드 분석은 한국 관광시장 뿐 만 아니라 지역 및 정부의 관광정책을 수립하는 관계자에게도 필수적이라 할 수 있다. 이에 소셜미디어 상의 핵심키워드와 감성분석을 알아보고 향후 관광소비자의 커뮤니케이션과 정보를 통해 마케팅 전략 계획을 수립하고 국내 관광산업을 활성화시키고자 한다. 한국관광의 트렌드를 분석하기 위해 텍스톰(TEXTOM) 6.0을 활용하였다. 구글, 네이버, 다음이 제공하는 카페, 블로그, 뉴스 등을 대상으로 '한국관광', '국내관광'을 키워드로 하여 2022년 9월31일부터 2023년 8월31일까지 데이터를 수집하였다. 텍스트마이닝을 통하여 빈도순으로 핵심 키워드와 TF-IDF를 각각 100개씩 추출한 후, CONCOR 분석, 감성분석을 실시하였다. 한국관광 핵심 키워드는 관광지, 여행동반 및 행태, 관광동기 및 체험, 숙박형태, 관광정보, 감성 관련 등에 관한 단어들이 상위권에 노출되었다. CONCOR분석 결과는 관광지, 관광정보, 관광활동/체험, 관광동기/콘텐츠, 인바운드 관련 등과 관련된 5개의 클러스터로 구분되었다. 마지막으로 감성분석 결과 긍정에 대한 문서와 어휘가 높게 나타났다. 이 연구는 한국관광에 대한 텍스트 마이닝을 통하여 급변하는 한국관광 트렌드를 분석하여 내국인 뿐 만 아니라 방한 외국인에 대한 국내관광 활성화에 의미 있는 기초자료를 제공할 것으로 기대한다.

Python을 이용한 SNS 크롤링 시스템 구축 (Building an SNS Crawling System Using Python)

  • 이종화
    • 한국산업정보학회논문지
    • /
    • 제23권5호
    • /
    • pp.61-76
    • /
    • 2018
  • 현대인이 살고 있는 네트워크 세상으로 모든 사물들이 들어오고 있다. 사물에 센서를 부착하는 사물인터넷의 영향으로 인해 네트워크로 실시간 데이터를 주고받는 것이 가능해졌다. 현대인들의 필수품인 모바일 디바이스는 일상생활의 모든 자취를 실시간으로 남기는 역할을 하고 있다. 바로 소셜 네트워크 서비스를 통하여 정보획득 활동과 커뮤니케이션 활동을 실시간으로 거대한 네트워크에 남기고 있는 것이다. 비즈니스 관점에서 고객의 니즈 분석은 바로 SNS 자료에서부터 시작된다는 등가가 성립된다. 본 연구는 웹 환경의 SNS 콘텐츠를 파이썬을 이용하여 실시간으로 자동 수집시스템을 구축하고자 한다. 세계적으로 많은 이용자수를 확보하고 있는 인스타그램, 트위터, 유튜브의 비정형적 데이터 수집 시스템을 통하여 고객의 니즈 분석에 도움이 되고자 한다. 파이썬의 웹드라이버 환경에서 가상 웹브라우저를 이용하여 마이닝 처리와 NLP 과정을 거쳐 DB에 저장된다. 본 연구의 결과 웹페이지를 통하여 서비스를 진행하고자하며 검색 기능만으로 원하는 데이터가 자동 수집되며 데이터의 시계열 분석을 통하여 네티즌의 이슈 반응을 실시간으로 확인할 수 있었다. 또한 검색부터 실행결과가 나오기까지 5초 이내 이루어지므로 제시된 알고리즘의 우수성을 확인하였다.

텍스트마이닝을 활용한 대전시 공공도서관 이용자의 인식과 경험 연구 - SNS와 온라인 뉴스 기사를 중심으로 - (A Study on the Perception and Experience of Daejeon Public Library Users Using Text Mining: Focusing on SNS and Online News Articles)

  • 최지원;곽승진
    • 한국문헌정보학회지
    • /
    • 제58권2호
    • /
    • pp.363-384
    • /
    • 2024
  • 본 연구는 텍스트마이닝 기법을 중심으로 빅데이터 분석을 활용하여 대전시 공공도서관에 대한 이용자의 인식과 경험을 살펴보고자 수행되었다. 이를 위하여 첫째, 소셜미디어에 나타난 이용후기 데이터를 수집하여 대전시 공공도서관에 대한 이용자들의 전반적인 인식과 평가를 탐색하였다. 둘째, 온라인 뉴스 기사 분석을 통해 사회적으로 논의되고 있는 현안을 파악하였다. 분석 결과, 첫째로 어린이 동반 이용자 비중의 높다는 것과 다음으로 LDA 분석을 통한 토픽이 '문화행사/프로그램', '자료 이용', '물리적 환경 및 시설', '도서관 서비스'의 네 가지 분류로 나타난다는 것, 마지막으로 뉴스기사 데이터에 도서관 및 복합문화공간 추가 건립과 도서관 협력 체계 구축에 대한 키워드가 핵심적으로 등장한다는 것을 확인하였다. 이를 바탕으로 지역 균형을 고려한 공공도서관 건립과 육아 및 보육 기관과의 업무협약을 통한 사회적 육아공동체 네트워크 조성을 제안하였다. 본 연구를 활용하여 대전시 공공도서관의 정책적·사회적 흐름을 알아보고 지역사회 수요를 반영하는 공공도서관 운영을 데이터에 기반하여 실행할 수 있기를 기대한다.