• 제목/요약/키워드: 소셜 리뷰

검색결과 55건 처리시간 0.03초

EmoNSMC: Distant Supervision 을 이용한 한국어 감정 태깅 데이터셋 구축 (EmoNSMC: Constructing Korean Emotion Tagging Dataset Using Distant Supervision)

  • 이영준;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.519-521
    • /
    • 2019
  • 최근 소셜 메신저를 통해 많은 사람들이 의사소통을 주고받음에 따라, 텍스트에서 감정을 파악하는 것이 중요하다. 따라서, 감정이 태깅된 데이터가 필요하다. 하지만, 기존 연구는 감정이 태깅된 데이터의 양이 많지가 않다. 이는 텍스트에서 감정을 파악하는데 성능 저하를 야기할 수 있다. 이를 해결하기 위해, 본 논문에서는 단어 매칭 방법과 형태소 매칭 방법을 이용하여 많은 양의 한국어 감정 태깅 데이터셋인 EmoNSMC 를 구축하였다. 구축한 데이터셋은 네이버 영화 감상 리뷰 데이터 (NSMC)에 디스턴트 수퍼비전 방법 (distant supervision) 방법을 적용하여 weak labeling을 진행하였고, 이 과정에서 한국어 감정 어휘 사전 (KTEA) 을 이용하였다. 구축된 데이터셋의 감정 분포 결과, 형태소 매칭 방법을 통해 구축한 데이터셋이 좀 더 감정 분포가 균등한 것을 확인할 수 있었다. 해당 데이터셋은 공개되어 있다.

  • PDF

기업의 리뷰척도 및 포스팅 정보와 구매패턴과의 관계분석 -아마존 구글 유저를 중심으로 (The Analysis of the Relationship between the Review Scale and Posting Information of Company and Purchasing Patterns -Focusing on Amazon and Google Users)

  • 김동일;최승일
    • 한국융합학회논문지
    • /
    • 제10권10호
    • /
    • pp.153-160
    • /
    • 2019
  • 본 연구는 급변하는 소셜네트워크 기반의 서비스 및 제품에 대한 평가척도와 리뷰 컨텐츠 속성이 소비자의 구매 패턴에 어떻한 영향을 주고 있는지를 분석하고자 하였다. 이러한 분석은 개인과 기업간에 밀접하고 빠르게 통합되고 있고, 네트워크와 스마트 기술이 소비활동에 다양하게 관여하고 있는 현 시점에서 리뷰와 평점의 유용성과 선험적 추정을 통해 소비 및 구매에 작용되는 변화하는 소비자의 거래 환경을 확인 할 수 있다. 본 연구를 위해 계층분석기법(AHP)과 델파이(Delphi)기법을 적용하여 상위 평가기준 변수를 유용성, 기술성, 가치성으로 분류하고, 각각의 하위변수는 3개의 요인으로 그룹화 해서 평가 가중치를 통해 중요도를 분석하였다. 분석결과 유용성의 내구요인과 기술성의 혁신요인 그리고 가치성의 비용요인 및 품질요인 등으로 중요도를 분석할 수 있었다. 따라서 본 연구는 주요 요인을 검증하면서 제공되는 리뷰 평점과 포스팅 정보의 신뢰성을 동시에 분석하여 다양한 방법으로 경제활동에 참여하는 소비자와 기업에 보완적이고 추가적인 유용한 정보를 제공할 수 있을 것으로 기대된다.

편향된 의견 문서 검출을 위한 이상치 탐지 기법 (Outlier Detection Techniques for Biased Opinion Discovery)

  • 연종흠;심준호;이상구
    • 한국전자거래학회지
    • /
    • 제18권4호
    • /
    • pp.315-326
    • /
    • 2013
  • 소셜 미디어에서는 상품평, 영화평 등의 다양한 종류의 의견이 표현되고 있으며, 사용자들이 물품 구매 등에 있어 이러한 의견을 참고로 하여 결정을 내리는 것은 일반적이 되었다. 하지만 의견 정보의 활용도가 높아질수록 이를 부적절하게 왜곡하는 사례 또한 증가하고 있다. 예를 들어, 홍보를 목적으로 과도하게 긍정적인 의견이 포함된 리뷰를 작성하거나, 반대로 일반적인 평가에서 벗어나 과도하게 부정적인 의견을 게시하는 경우 등이다. 편향된 의견은 소셜 미디어의 신뢰성과 연결 되기 때문에 이를 검출하는 것은 점차 중요한 문제로 대두되고 있다. 기존의 오피니언 마이닝 혹은 감성 분석은 문서를 분석하여 그 문서가 가지고 있는 의견의 성향을 판단하는 기법이다. 하지만 기존의 연구는 의견을 단순히 긍정/부정으로만 분류하는 방향으로 연구가 이루어져 왔으며, 특히 사전에 의견 성향에 따라 분류된 충분한 양의 학습 데이터가 필요하다는 단점이 있다. 본 논문에서는 학습데이터가 없는 경우에, 전체 문서의 의견 성향 분포에서 벗어난 의견 문서를 검출하는 기법을 제안한다. 여기에는 각도기반 이상치 탐지와, 개인화된 페이지랭크 방법을 활용한다. 또한 영화 리뷰 문서를 대상으로 실험을 수행하여 제안한 방법들의 성능을 분석하였다.

텍스트 마이닝을 활용한 미국 노년 소비자와 애완용 로봇 간 상호작용에 대한 분석: Joy For All Companion Pets에 대한 아마존 리뷰를 중심으로 (Text-Mining Analysis on the Interaction between the American Consumers Aged over 60 and Companion Pets Robots: Focused on Amazon Reviews for Joy For All Companion Pets)

  • 정예은;이유림;정재은
    • 디지털융복합연구
    • /
    • 제19권10호
    • /
    • pp.469-489
    • /
    • 2021
  • 본 연구는 정서 지원 애완용 로봇에 대한 소비자의 담론을 살펴보고 키워드를 통해 해당 제품에 대한 노년 소비자의 반응을 파악하고자 아마존 사이트 내 하즈브로(Hasbro)의 Companion Pets 제품 사용에 대한 미국 소비자들의 리뷰를 수집하고, R을 이용하여 단어 빈도분석, 토픽모델링 LDA 분석을 실시하였다. 첫째, 키워드 빈도분석 결과 애완용 로봇의 형태가 실제 동물과 유사한지에 대한 관심이 높은 것으로 나타났다. 둘째, 토픽모델링 결과 5개의 토픽으로 인지, 감정, 행동적 반응이 도출되었으며 이는 긍정 및 부정으로 크게 분류되었다. 셋째, 소비자와 애완용 로봇의 상호작용에 영향을 미치는 사용자, 제품 및 환경적 특성이 확인되었다. 애완용 로봇은 반려동물을 키우기 어려운 사람들이 이를 대체하기 위하여 사용하고, 인지적 어려움이 있는 노년 소비자와 신체적 어려움이 있는 소비자가 이를 이용하는 것으로 나타났다. 본 연구는 코로나19와 같은 팬데믹 상황에서 정서 지원 기능을 수행하는 애완용 로봇에 대하여 이해하고, 소비자의 효용을 극대화하는 서비스를 제공하는데 도움을 줄 것으로 기대한다.

교통망 관찰과 도시 특징지도를 위한 퍼지영역 온톨로지 기반 오피니언 마이닝 (Fuzzy Domain Ontology-based Opinion Mining for Transportation Network Monitoring and City Features Map)

  • 알리;곽대한;리아즈;김계현;곽경섭
    • 한국ITS학회 논문지
    • /
    • 제15권1호
    • /
    • pp.109-118
    • /
    • 2016
  • 트래픽 혼잡이 도심지역에서는 급속히 증가하고 있다. 이 문제를 해결하기 위하여 유용한 핵심 정보를 사용하여 트래픽 상황을 신속하게 인지할 수 있는 실시간 그리고 지능적인 방안이 필요하다. 본 연구는 실시간 교통망을 관찰하고 여행자를 위한 도시의 극성 지도를 구축하기 위하여 퍼지기반 오피니언 마이닝 시스템을 제안한다. 제안된 시스템은 도시의 교통 상황에 관련한 트위터 및 리뷰를 추출하고, 특징 오피니언을 추출하여, 퍼지기반 오피니언 마이닝 시스템를 사용하여 교통 및 도시의 특징적 극성을 규명한다. $Prot{\acute{e}}g{\acute{e}}$ OWL 과 자바를 사용하여 퍼지기반 오피니언 마이닝 시스템과 그 지능형 프로토타입을 개발한다. 실험을 통하여 트위트 및 리뷰의 분석과 오피니언 마이닝 측면에서 성능이 개선됨을 확인하였다.

소셜커머스에서 부정적 리뷰 유형, 브랜드 명성, 기회희소성지각이 패션제품 선호도에 미치는 영향 (Impact of Negative Review Type, Brand Reputation, and Opportunity Scarcity Perception on Preferences of Fashion Products in Social Commerce)

  • 주보라;황선진
    • 패션비즈니스
    • /
    • 제20권4호
    • /
    • pp.207-225
    • /
    • 2016
  • This study aims to analyze the impact of negative review type, brand reputation and opportunity scarcity perception, on preferences of fashion products in social commerce. For the above evaluation, we used the 2 (negative review type: objective/subjective) ${\times}2$ (brand reputation: high/low) ${\times}2$ (opportunity scarcity perception: high/low) model, designed with three mixed elements. We enrolled 260 women in their 20s and 30s, who live in Seoul and have used social commerce; a final total of 207 subjects were considered for analysis. The data were analyzed using the SPSS 18 program and reliability test, t-test and three-way ANOVA were performed. Following observations were made: First, preferences were higher when the subjects read objective negative reviews than subjective negative reviews, and when a fashion product was from a brand of high reputation than a brand of low reputation. Second, the interaction effect between negative review type and brand reputation was greater among the subjects whose opportunity scarcity perception is high, than those having low opportunity scarcity perception. Thus, we conclude that the social commerce should encourage consumers to write more objective reviews, and fashion brands should manage their reputations well. Also, social commerce can use scarcity messages aggressively to increase preferences of global fashion luxury goods, which is actively marketed in social commerce since 2015.

Sentiment Analysis of Airline Satisfaction Using Social Big Data: A Pre- and Post-COVID-19 Comparison

  • Ju-Yang Lee;Phil-Sik Jang
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권6호
    • /
    • pp.201-209
    • /
    • 2024
  • COVID-19는 항공산업에 큰 영향을 주어 전 세계적인 여행 제한과 보안 강화 등의 변화를 불러 왔다. 본 연구는 COVID-19 전후 항공 서비스 만족도의 변화양상을 파악하기 위해 2016년부터 2023년까지 SKYTRAX 웹사이트에 게시된 147개 항공사에 대한 59,818개의 리뷰를 수집하고 감성 분석 기법을 활용하여 COVID-19 전후의 항공사 만족도, 리뷰 감성, 만족도에 영향을 미치는 속성을 비교 분석하였다. 분석 결과, COVID-19 이후 항공사 만족도 전반이 통계적으로 유의미하게 하락했으며 (p<0.001), 모든 항공사 선택 속성에 대한 긍정적 감성 비율이 유의미하게 감소한 반면, 부정적 감성 비율은 객실 및 기내서비스를 제외한 모든 속성에서 유의미하게 증가했다. 또한, 운항 서비스는 COVID-19 전후 기간 모두 전반적인 서비스 만족도에 가장 큰 영향을 미치는 것으로 나타났다. 이 연구는 COVID-19 전후 글로벌 주요 항공사의 만족도 속성에 대한 정량적 분석을 제공함으로써 향후 항공산업의 서비스 만족도 제고에 이바지할 것으로 기대된다.

Travel Route Recommendation Utilizing Social Big Data

  • Yu, Yang Woo;Kim, Seong Hyuck;Kim, Hyeon Gyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.117-125
    • /
    • 2022
  • 최근 여행에 대한 관심이 높아지면서, 번거로운 여행 일정을 대신 수립해주는 여행 일정 추천 서비스에 대한 연구가 활발히 진행되고 있다. 여행 일정 추천에 있어 가장 중요하면서도 공통적으로 제시되는 목표는 여행 목적지 근처의 인기 관광지를 포함한 최단 거리 여행 경로를 제공하는 것이다. 다수의 기존 연구에서는 개인 맞춤형 스케줄 제공에 초점을 맞추었으며, 사용자의 여행 이동 경로 이력이나 SNS 리뷰가 존재하지 않을 경우 설문 조사가 필요한 문제점이 있었다. 또한 최단 거리를 계산할 때 발생할 수 있는 현실적인 문제점도 명확히 지적되지 않았다. 이와 관련하여, 본 논문에서는 소셜 빅데이터를 활용하여 인기 관광지를 알아내기 위한 정량화된 방법을 소개하고, 최단 거리 알고리즘 적용시 발생할 수 있는 문제점과 이를 해결하기 위한 휴리스틱 알고리즘을 함께 제시한다. 제안 방법을 검증하기 위해, 경상남도를 대상으로 63,000여 개의 플레이스 정보를 수집하고 빅데이터 분석을 수행했으며, 실험을 통해 제안한 휴리스틱 스케줄링 알고리즘이 실제 데이터 상에서 실시간 처리가 가능함을 확인하였다.

한국어 언어모델 파인튜닝을 통한 협찬 블로그 텍스트 생성 (Generating Sponsored Blog Texts through Fine-Tuning of Korean LLMs)

  • 김보경;변재연;차경애
    • 한국산업정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.1-12
    • /
    • 2024
  • 본 논문에서는 대규모 한국어 언어모델인 KoAlpaca를 파인튜닝하고 이를 이용한 블로그 텍스트 생성 시스템을 구현하였다. 소셜 미디어 플랫폼의 블로그는 기업 마케팅 수단으로 널리 활용된다. 수집된 협찬 블로그 텍스트의 감정 분석과 정제를 통한 긍정 리뷰의 학습 데이터를 구축하고 KoAlpaca 학습의 경량화를 위한 QLoRA를 적용하였다. QLoRA는 학습에 필요한 메모리 사용량을 크게 줄이는 파인튜닝 접근법으로 파라미터 크기 12.8B 경우의 실험 환경에서 LoRA 대비 최대 약 58.8%의 메모리 사용량 감소를 확인하였다. 파인튜닝 모델의 생성 성능 평가를 위해서 학습 데이터에 포함되지 않은 100개의 입력으로 생성한 텍스트는 사전학습 모델에 비해서 평균적으로 두배 이상의 단어 수를 생성하였으며 긍정 감정의 텍스트 역시 두 배 이상으로 나타났다. 정성적 생성 성능 평가를 위한 설문조사에서 파인튜닝 모델의 생성 결과가 제시된 주제에 더 잘 부합한다는 응답이 평균 77.5%로 나타났다. 이를 통해서 본 논문의 협찬물에 대한 긍정 리뷰 생성 언어모델은 콘텐츠 제작을 위한 시간 관리의 효율성을 높이고 일관된 마케팅 효과를 보장하는 콘텐츠 제작이 가능함을 보였다. 향후 사전학습 모델의 생성 요소에 의해서 긍정 리뷰의 범주에서 벗어나는 생성 결과를 감소시키기 위해서 학습 데이터의 증강을 활용한 파인튜닝을 진행할 예정이다.

한국어 언어 모델의 정치 편향성 검증 및 정량적 지표 제안 (Measurement of Political Polarization in Korean Language Model by Quantitative Indicator)

  • 김정욱;김경민;;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.16-21
    • /
    • 2022
  • 사전학습 말뭉치는 위키백과 문서 뿐만 아니라 인터넷 커뮤니티의 텍스트 데이터를 포함한다. 이는 언어적 관념 및 사회적 편향된 정보를 포함하므로 사전학습된 언어 모델과 파인튜닝한 언어 모델은 편향성을 내포한다. 이에 따라 언어 모델의 중립성을 평가할 수 있는 지표의 필요성이 대두되었으나, 아직까지 언어 인공지능 모델의 정치적 중립성에 대해 정량적으로 평가할 수 있는 척도는 존재하지 않는다. 본 연구에서는 언어 모델의 정치적 편향도를 정량적으로 평가할 수 있는 지표를 제시하고 한국어 언어 모델에 대해 평가를 수행한다. 실험 결과, 위키피디아로 학습된 언어 모델이 가장 정치 중립적인 경향성을 나타내었고, 뉴스 댓글과 소셜 리뷰 데이터로 학습된 언어 모델의 경우 정치 보수적, 그리고 뉴스 기사를 기반으로 학습된 언어 모델에서 정치 진보적인 경향성을 나타냈다. 또한, 본 논문에서 제안하는 평가 방법의 안정성 검증은 각 언어 모델의 정치적 편향 평가 결과가 일관됨을 입증한다.

  • PDF