Journal of the Korean Society for information Management
/
v.36
no.4
/
pp.207-226
/
2019
Depression is a serious psychological disease that is expected to afflict an increasing number of people. And studies on depression have been conducted in the context of social media because social media is a platform through which users often frankly express their emotions and often reveal their mental states. In this study, large amounts of Korean text were collected and analyzed to determine whether such data could be used to detect depression in users. This study analyzed data collected from Twitter users who had and did not have depressive tendencies between January 2016 and February 2019. The data for each user was separately analyzed before and after the appearance of depressive tendencies to see how their expression changed. In this study the data were analyzed through co-occurrence word analysis, topic modeling, and sentiment analysis. This study's automated data collection method enabled analyses of data collected over a relatively long period of time. Also it compared the textual characteristics of users with depressive tendencies to those without depressive tendencies.
Journal of Korea Society of Industrial Information Systems
/
v.27
no.5
/
pp.37-48
/
2022
With development of Digital Technology, social issues are communicated through digital-based platform such as SNS and form public opinion. This study attempted to analyze big data from Twitter, a world-renowned social network service, and find out the public opinion. After collecting Twitter data based on 14 keywords for 1 year in 2021, analyzed the term-frequency and relationship among keyword documents with pearson correlation coefficient using Data-mining Technology. Furthermore, the 6 main topics that on the center of information security field in 2021 were derived through topic modeling using the LDA(Latent Dirichlet Allocation) technique. These results are expected to be used as basic data especially finding key agenda when establishing strategies for the next step related industries or establishing government policies.
Data is the most important asset in the financial sector. On average, 71 percent of financial institutions generate competitive advantage over data analysis. In particular, in the card industry, the card transaction data is widely used in the development of merchant information, economic fluctuations, and information services by analyzing patterns of consumer behavior and preference trends of all customers. However, creation of new value through fusion of data is insufficient. This study introduces the analysis and forecasting of consumption trends of credit card companies which convergently analyzed the social data and the sales data of the company's own. BC Card developed an algorithm for linking card and social data with trend profiling, and developed a visualization system for analysis contents. In order to verify the performance, BC card analyzed the trends related to 'Six Pocket' and conducted th pilot marketing campaign. As a result, they increased marketing multiplier by 40~100%. This study has implications for creating a methodology and case for analyzing the convergence of structured and unstructured data analysis that have been done separately in the past. This will provide useful implications for future trends not only in card industry but also in other industries.
Emerging hotspot and trendy areas are formed into alleys and blocks with the help of viral effects among social network services (SNS) users called "Golmogleo." These users search for every corner of the alleys to share and promote their own favorite places through SNS. An analysis of hot places is limited if it is only based on macroeconomic indicators such as commercial area data published by national organizations, large-scale visiting facilities, and commuter figures. Careful analyses based on consumers' actual activities are needed. This study develops a "social big data analysis methodology" using Instagram data, which is one of the most popular SNSs suitable to identify recent consumer trends. We build a spatial analysis model using Local Moran's I. Results show that our model identifies new trend zones on the basis of posting data in Instagram, which are not included in the commercial information prepared by national organizations. The proposed analysis methodology enables better identification of the latest trend areas formulated by SNS user activities. It also provides practical information for start-ups, small business owners, and alley merchants for marketing purposes. This analytical methodology can be applied to future studies on social big data analysis.
Today there is a fierce competition between social commerce and multi-channel distribution in korea and it is need to do comparative analysis about success factors between social commerce and multi-channel distribution. Unlike the other studies that have only used survey method, this study analyzed the success factors between social commerce and multichannel distribution using text mining techniques. We expect that the result of the study not only gives the practical implication for making the competition strategy of the retailers but also contributes to the diverse extension research.
As the number of social network users increases, the information on event such as social issues and disasters receiving attention in each region is promptly posted by the bucket through social media site in real time, and its social ripple effect becomes huge. This study proposes a detection method of events that draw attention from users in specific region at specific time by using twitter data with regional information. In order to collect Twitter data, we use Twitter Streaming API. After collecting data, We implemented event detection system by analyze the frequency of a keyword which contained in a twit in a particular time and clustering the keywords that describes same event by exploiting keywords' co-occurrence graph. Finally, we evaluates the validity of our method through experiments.
Proceedings of the Korea Information Processing Society Conference
/
2020.05a
/
pp.519-522
/
2020
1989년에 WWW(World Wide Web)이 도입 되면서 세계적으로 인터넷의 보급이 시작되었다. 정보화 시대라고 알려진 3차 산업혁명 이후로 대량의 정보들이 소셜 미디어를 통하여 생산되었다. 소셜미디어는 2007년에 인터넷 사용자들 중 56%의 이용률을 보였지만 2008년 2분기에는 75%의 이용률로 증가함에 따라 대부분의 사용자들이 많이 사용하며 의존하게 되었다. 또한 소셜 미디어를 통해 발생 되는 데이터들을 이용하여 기업들은 이윤 창출을 할 수 있다. 하지만 이러한 소셜 미디어는 악의적인 목적을 통해 주가 조작, 정치적 선동 등을 할 수 있는 가짜 뉴스와 허위 정보들을 생성할 수 있으며 이에 따라 대책이 시급하다. 또한 가짜 뉴스는 사람이 글을 작성할 수도 있지만 최근 인공지능 기술의 발달에 따라 프로그램을 통해 자동적으로 생성 될 수도 있다. 본 논문에서는 이와 같은 실제 뉴스와 인공지능을 기반으로 한 뉴스를 분석한다. Kaggle에서 실제 뉴스 데이터를 수집하여 헤드라인을 OpenAI의 GPT-2 언어 모델을 통해 뉴럴 가짜 뉴스를 생성 하였다. 파이썬의 NLTK 모듈을 이용하여 전처리를 진행하였고 t-검정과 박스 플롯을 활용하여 분석을 진행하였다. 분석된 주요 속성들을 의사결정트리를 통해 모델 검증을 하였고 k-fold 교차검증을 통해 분류 모델을 평가하였다. 결과로 전체 분류 정확도 평균 89%의 성능을 보여주었다.
Kim, Jeong-Joon;Kwak, Kwang-Jin;Lee, Don-Hee;Lee, Yong-Soo
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.16
no.6
/
pp.225-230
/
2016
Recently, Web has arisen large amount of data that to the development of the network and the Internet. In order to process it appeared that Big Data technology. Big Data technologies have been studied aiming a multifaceted and accurate analysis using existing regular data and a variety of data social data. But social data does not have the expertise and objectivity. And such manipulation and concealment and distortion of information have been raised troubling. Thus, this paper proposes for trust big data platform and will be described in detail. The big data platform proposed in this paper consists of data refiner, Data Analyzer, co-truster, visualizer, searcher, etc.
Journal of the Korea Institute of Information and Communication Engineering
/
v.17
no.10
/
pp.2439-2446
/
2013
Recently, SNS (Social Network Service) such as Twitter and Facebook has grown dramatically because of smart phones. Since development of IT has created massive information, social big data extremely increased. Competition between corporations is getting more intense, so they need customer feedback in order to fulfill an effective management. Because social big data plays an important role for getting customer feedback, a lot of corporations are interested in analyzing and applying of social big data. Collecting and analyzing social big data is operated by Buzz monitoring system. This paper demonstrates the research of buzz monitoring system that analyzes big data, and presents examples of customer reputation using buzz monitoring. In the paper, after all, it would analyze the result from the customer reputation, and research the implication.
Proceedings of the Korea Information Processing Society Conference
/
2016.10a
/
pp.742-745
/
2016
빅데이터 시대를 맞이하여 텍스트마이닝과 오피니언마이닝의 활용도가 커지고 있는 시점에서 소셜 네트워크 데이터로부터 유용한 데이터를 추출하는 작업은 매우 중요하다. 이에 본 논문은 블로그 HTML 문서에서 추출한 태그 특징에 로지스틱 회귀 및 앙상블 기법을 적용하여 본문을 포함하는 태그를 분류하는 모델을 구성한 뒤 태그의 깊이 특징을 이용하여 주요 본문을 찾는 방법을 제안한다. 직접 수집한 데이터를 이용한 실험에서 태그 분류 정확도가 0.990, 본문을 찾아낸 문서의 비율이 80.5%로 나왔다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.