• Title/Summary/Keyword: 소셜 데이터

Search Result 985, Processing Time 0.026 seconds

An Analysis of the Discourse Topics of Users who Exhibit Symptoms of Depression on Social Media (소셜미디어를 통한 우울 경향 이용자 담론 주제 분석)

  • Seo, Harim;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.4
    • /
    • pp.207-226
    • /
    • 2019
  • Depression is a serious psychological disease that is expected to afflict an increasing number of people. And studies on depression have been conducted in the context of social media because social media is a platform through which users often frankly express their emotions and often reveal their mental states. In this study, large amounts of Korean text were collected and analyzed to determine whether such data could be used to detect depression in users. This study analyzed data collected from Twitter users who had and did not have depressive tendencies between January 2016 and February 2019. The data for each user was separately analyzed before and after the appearance of depressive tendencies to see how their expression changed. In this study the data were analyzed through co-occurrence word analysis, topic modeling, and sentiment analysis. This study's automated data collection method enabled analyses of data collected over a relatively long period of time. Also it compared the textual characteristics of users with depressive tendencies to those without depressive tendencies.

Social Media Bigdata Analysis Based on Information Security Keyword Using Text Mining (텍스트마이닝을 활용한 정보보호 키워드 기반 소셜미디어 빅데이터 분석)

  • Chung, JinMyeong;Park, YoungHo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.5
    • /
    • pp.37-48
    • /
    • 2022
  • With development of Digital Technology, social issues are communicated through digital-based platform such as SNS and form public opinion. This study attempted to analyze big data from Twitter, a world-renowned social network service, and find out the public opinion. After collecting Twitter data based on 14 keywords for 1 year in 2021, analyzed the term-frequency and relationship among keyword documents with pearson correlation coefficient using Data-mining Technology. Furthermore, the 6 main topics that on the center of information security field in 2021 were derived through topic modeling using the LDA(Latent Dirichlet Allocation) technique. These results are expected to be used as basic data especially finding key agenda when establishing strategies for the next step related industries or establishing government policies.

Consumer Trend Platform Development for Combination Analysis of Structured and Unstructured Big Data (정형 비정형 빅데이터의 융합분석을 위한 소비 트랜드 플랫폼 개발)

  • Kim, Sunghyun;Chang, Sokho;Lee, Sangwon
    • Journal of Digital Convergence
    • /
    • v.15 no.6
    • /
    • pp.133-143
    • /
    • 2017
  • Data is the most important asset in the financial sector. On average, 71 percent of financial institutions generate competitive advantage over data analysis. In particular, in the card industry, the card transaction data is widely used in the development of merchant information, economic fluctuations, and information services by analyzing patterns of consumer behavior and preference trends of all customers. However, creation of new value through fusion of data is insufficient. This study introduces the analysis and forecasting of consumption trends of credit card companies which convergently analyzed the social data and the sales data of the company's own. BC Card developed an algorithm for linking card and social data with trend profiling, and developed a visualization system for analysis contents. In order to verify the performance, BC card analyzed the trends related to 'Six Pocket' and conducted th pilot marketing campaign. As a result, they increased marketing multiplier by 40~100%. This study has implications for creating a methodology and case for analyzing the convergence of structured and unstructured data analysis that have been done separately in the past. This will provide useful implications for future trends not only in card industry but also in other industries.

A Big Data Analysis Methodology for Examining Emerging Trend Zones Identified by SNS Users: Focusing on the Spatial Analysis Using Instagram Data (SNS 사용자에 의해 형성된 트렌드 중심지 도출을 위한 빅 데이터 분석 방법론 연구: 인스타그램 데이터 활용 공간분석을 중심으로)

  • Il Sup Lee;Kyung Kyu Kim;Ae Ri Lee
    • Information Systems Review
    • /
    • v.20 no.2
    • /
    • pp.63-85
    • /
    • 2018
  • Emerging hotspot and trendy areas are formed into alleys and blocks with the help of viral effects among social network services (SNS) users called "Golmogleo." These users search for every corner of the alleys to share and promote their own favorite places through SNS. An analysis of hot places is limited if it is only based on macroeconomic indicators such as commercial area data published by national organizations, large-scale visiting facilities, and commuter figures. Careful analyses based on consumers' actual activities are needed. This study develops a "social big data analysis methodology" using Instagram data, which is one of the most popular SNSs suitable to identify recent consumer trends. We build a spatial analysis model using Local Moran's I. Results show that our model identifies new trend zones on the basis of posting data in Instagram, which are not included in the commercial information prepared by national organizations. The proposed analysis methodology enables better identification of the latest trend areas formulated by SNS user activities. It also provides practical information for start-ups, small business owners, and alley merchants for marketing purposes. This analytical methodology can be applied to future studies on social big data analysis.

A Comparative Analysis of Success Factors Between Social Commerce and Multichannel Distribution Using Text Mining Techniques (텍스트마이닝 기법을 이용한 소셜커머스와 멀티채널 유통업체 간 성공요인 비교 연구)

  • Choi, Hyun-Seung;Kim, Ye-Sol;Cho, Hyuk-Jun;Kang, Ju-Young
    • The Journal of Bigdata
    • /
    • v.1 no.2
    • /
    • pp.35-44
    • /
    • 2016
  • Today there is a fierce competition between social commerce and multi-channel distribution in korea and it is need to do comparative analysis about success factors between social commerce and multi-channel distribution. Unlike the other studies that have only used survey method, this study analyzed the success factors between social commerce and multichannel distribution using text mining techniques. We expect that the result of the study not only gives the practical implication for making the competition strategy of the retailers but also contributes to the diverse extension research.

  • PDF

Event Detection System Using Twitter Data (트위터를 이용한 이벤트 감지 시스템)

  • Park, Tae Soo;Jeong, Ok-Ran
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.153-158
    • /
    • 2016
  • As the number of social network users increases, the information on event such as social issues and disasters receiving attention in each region is promptly posted by the bucket through social media site in real time, and its social ripple effect becomes huge. This study proposes a detection method of events that draw attention from users in specific region at specific time by using twitter data with regional information. In order to collect Twitter data, we use Twitter Streaming API. After collecting data, We implemented event detection system by analyze the frequency of a keyword which contained in a twit in a particular time and clustering the keywords that describes same event by exploiting keywords' co-occurrence graph. Finally, we evaluates the validity of our method through experiments.

AI-based language generation model analysis (인공지능 기반의 언어 생성 모델 분석)

  • Lee, Seung Cheol;Jang, Yonghun;Park, Chang-Hyeon;Seo, Yeong-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.519-522
    • /
    • 2020
  • 1989년에 WWW(World Wide Web)이 도입 되면서 세계적으로 인터넷의 보급이 시작되었다. 정보화 시대라고 알려진 3차 산업혁명 이후로 대량의 정보들이 소셜 미디어를 통하여 생산되었다. 소셜미디어는 2007년에 인터넷 사용자들 중 56%의 이용률을 보였지만 2008년 2분기에는 75%의 이용률로 증가함에 따라 대부분의 사용자들이 많이 사용하며 의존하게 되었다. 또한 소셜 미디어를 통해 발생 되는 데이터들을 이용하여 기업들은 이윤 창출을 할 수 있다. 하지만 이러한 소셜 미디어는 악의적인 목적을 통해 주가 조작, 정치적 선동 등을 할 수 있는 가짜 뉴스와 허위 정보들을 생성할 수 있으며 이에 따라 대책이 시급하다. 또한 가짜 뉴스는 사람이 글을 작성할 수도 있지만 최근 인공지능 기술의 발달에 따라 프로그램을 통해 자동적으로 생성 될 수도 있다. 본 논문에서는 이와 같은 실제 뉴스와 인공지능을 기반으로 한 뉴스를 분석한다. Kaggle에서 실제 뉴스 데이터를 수집하여 헤드라인을 OpenAI의 GPT-2 언어 모델을 통해 뉴럴 가짜 뉴스를 생성 하였다. 파이썬의 NLTK 모듈을 이용하여 전처리를 진행하였고 t-검정과 박스 플롯을 활용하여 분석을 진행하였다. 분석된 주요 속성들을 의사결정트리를 통해 모델 검증을 하였고 k-fold 교차검증을 통해 분류 모델을 평가하였다. 결과로 전체 분류 정확도 평균 89%의 성능을 보여주었다.

Study of Trust Bigdata Platform (신뢰성 빅데이터 플렛폼의 연구)

  • Kim, Jeong-Joon;Kwak, Kwang-Jin;Lee, Don-Hee;Lee, Yong-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.225-230
    • /
    • 2016
  • Recently, Web has arisen large amount of data that to the development of the network and the Internet. In order to process it appeared that Big Data technology. Big Data technologies have been studied aiming a multifaceted and accurate analysis using existing regular data and a variety of data social data. But social data does not have the expertise and objectivity. And such manipulation and concealment and distortion of information have been raised troubling. Thus, this paper proposes for trust big data platform and will be described in detail. The big data platform proposed in this paper consists of data refiner, Data Analyzer, co-truster, visualizer, searcher, etc.

A Study on the Case Analysis of Customer Reputation based on Big Data (빅 데이터를 이용한 고객평판 사례분석에 관한 연구)

  • Song, Eun-Jee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2439-2446
    • /
    • 2013
  • Recently, SNS (Social Network Service) such as Twitter and Facebook has grown dramatically because of smart phones. Since development of IT has created massive information, social big data extremely increased. Competition between corporations is getting more intense, so they need customer feedback in order to fulfill an effective management. Because social big data plays an important role for getting customer feedback, a lot of corporations are interested in analyzing and applying of social big data. Collecting and analyzing social big data is operated by Buzz monitoring system. This paper demonstrates the research of buzz monitoring system that analyzes big data, and presents examples of customer reputation using buzz monitoring. In the paper, after all, it would analyze the result from the customer reputation, and research the implication.

Extracting Significant Information from Social Text using Machine Learning (기계학습을 활용한 소셜 텍스트의 주요 정보 추출 기법)

  • Kim, So-Hyeon;Kim, Han-joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.742-745
    • /
    • 2016
  • 빅데이터 시대를 맞이하여 텍스트마이닝과 오피니언마이닝의 활용도가 커지고 있는 시점에서 소셜 네트워크 데이터로부터 유용한 데이터를 추출하는 작업은 매우 중요하다. 이에 본 논문은 블로그 HTML 문서에서 추출한 태그 특징에 로지스틱 회귀 및 앙상블 기법을 적용하여 본문을 포함하는 태그를 분류하는 모델을 구성한 뒤 태그의 깊이 특징을 이용하여 주요 본문을 찾는 방법을 제안한다. 직접 수집한 데이터를 이용한 실험에서 태그 분류 정확도가 0.990, 본문을 찾아낸 문서의 비율이 80.5%로 나왔다.