• Title/Summary/Keyword: 소셜미디어 활용의 목적

Search Result 99, Processing Time 0.022 seconds

A Study on the Effect of Personality Types of College Students on Information Use Behavior and Satisfaction for University Libraries: Focusing on Cultural Learning (대학생의 성격유형이 대학도서관 정보이용행태와 만족도에 미치는 영향 연구: 교양학습을 중심으로)

  • Tae Hee Lee;Woo Kwon Chang
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.3
    • /
    • pp.205-247
    • /
    • 2024
  • The purpose of this study is to investigate how information use behavior and satisfaction appear by personality type for liberal arts learning among college students, and to propose a customized information service plan that can help college students study in university libraries. To this end, a survey was conducted on 169 university students enrolled in C University. The analysis consisted of demographic characteristics, MBTI personality type, information use behavior, satisfaction, and university library service perception survey. Frequency analysis, cross-analysis, multinomial logistic regression, one-way ANOVA, and hierarchical regression analysis were performed on the collected data using the SPSS 29 statistical program. As a result of the study, first, significant results were found in 'preferred information sources', 'information source consideration factors', and 'information collection patterns' according to personality type. Second, there were statistically significant differences in satisfaction according to personality type in 'system utilization ability', 'data selection ability', and 'the degree of recognition of the usefulness of learning activities'. Third, in the relationship between preferred information sources and satisfaction based on personality types and information use behaviors, there appears to be an inverse relationship when the content includes various topics with a lack of academic depth or expertise. However, the preference for 'social media' is positively correlated with 'satisfaction with search results,' as it provides diverse perspectives and viewpoints in liberal education

Improving Performance of Recommendation Systems Using Topic Modeling (사용자 관심 이슈 분석을 통한 추천시스템 성능 향상 방안)

  • Choi, Seongi;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.101-116
    • /
    • 2015
  • Recently, due to the development of smart devices and social media, vast amounts of information with the various forms were accumulated. Particularly, considerable research efforts are being directed towards analyzing unstructured big data to resolve various social problems. Accordingly, focus of data-driven decision-making is being moved from structured data analysis to unstructured one. Also, in the field of recommendation system, which is the typical area of data-driven decision-making, the need of using unstructured data has been steadily increased to improve system performance. Approaches to improve the performance of recommendation systems can be found in two aspects- improving algorithms and acquiring useful data with high quality. Traditionally, most efforts to improve the performance of recommendation system were made by the former approach, while the latter approach has not attracted much attention relatively. In this sense, efforts to utilize unstructured data from variable sources are very timely and necessary. Particularly, as the interests of users are directly connected with their needs, identifying the interests of the user through unstructured big data analysis can be a crew for improving performance of recommendation systems. In this sense, this study proposes the methodology of improving recommendation system by measuring interests of the user. Specially, this study proposes the method to quantify interests of the user by analyzing user's internet usage patterns, and to predict user's repurchase based upon the discovered preferences. There are two important modules in this study. The first module predicts repurchase probability of each category through analyzing users' purchase history. We include the first module to our research scope for comparing the accuracy of traditional purchase-based prediction model to our new model presented in the second module. This procedure extracts purchase history of users. The core part of our methodology is in the second module. This module extracts users' interests by analyzing news articles the users have read. The second module constructs a correspondence matrix between topics and news articles by performing topic modeling on real world news articles. And then, the module analyzes users' news access patterns and then constructs a correspondence matrix between articles and users. After that, by merging the results of the previous processes in the second module, we can obtain a correspondence matrix between users and topics. This matrix describes users' interests in a structured manner. Finally, by using the matrix, the second module builds a model for predicting repurchase probability of each category. In this paper, we also provide experimental results of our performance evaluation. The outline of data used our experiments is as follows. We acquired web transaction data of 5,000 panels from a company that is specialized to analyzing ranks of internet sites. At first we extracted 15,000 URLs of news articles published from July 2012 to June 2013 from the original data and we crawled main contents of the news articles. After that we selected 2,615 users who have read at least one of the extracted news articles. Among the 2,615 users, we discovered that the number of target users who purchase at least one items from our target shopping mall 'G' is 359. In the experiments, we analyzed purchase history and news access records of the 359 internet users. From the performance evaluation, we found that our prediction model using both users' interests and purchase history outperforms a prediction model using only users' purchase history from a view point of misclassification ratio. In detail, our model outperformed the traditional one in appliance, beauty, computer, culture, digital, fashion, and sports categories when artificial neural network based models were used. Similarly, our model outperformed the traditional one in beauty, computer, digital, fashion, food, and furniture categories when decision tree based models were used although the improvement is very small.

A Study on the UIC(University & Industry Collaboration) Model for Global New Business (글로벌 사업 진출을 위한 산학협력 협업촉진모델: 경남 G대학 GTEP 사업 실험사례연구)

  • Baek, Jong-ok;Park, Sang-hyeok;Seol, Byung-moon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.10 no.6
    • /
    • pp.69-80
    • /
    • 2015
  • This can be promoted collaboration environment for the system and the system is very important for competitiveness, it is equipped. If so, could work in collaboration with members of the organization to promote collaboration what factors? Organizational collaboration and cooperation of many people working, or worth pursuing common goals by sharing information and processes to improve labor productivity, defined as collaboration. Factors that promote collaboration are shared visions, the organization's principles and rules that reflect the visions, on-line system developments, and communication methods. First, it embodies the vision shared by the more sympathetic members are active and voluntary participation in the activities of the organization can be achieved. Second, the members are aware of all the rules and principles of a united whole is accepted and leads to good performance. In addition, the ability to share sensitive business activities for self-development and also lead to work to make this a regular activity to create a team that can collaborate to help the environment and the atmosphere. Third, a systematic construction of the online collaboration system is made efficient and rapid task. According to Student team and A corporation we knew that Cloud services and social media, low-cost, high-efficiency services could achieve. The introduction of the latest information technology changes, the members of the organization's systems and active participation can take advantage of continuing education must be made. Fourth, the company to inform people both inside and outside of the organization to communicate actively to change the image of the company activities, the creation of corporate performance is very important to figure. Reflects the latest trend to actively use social media to communicate the effort is needed. For development of systematic collaboration promoting model steps to meet the organizational role. First, the Chief Executive Officer to make a firm and clear vision of the organization members to propagate the faith, empathy gives a sense of belonging should be able to have. Second, middle managers, CEO's vision is to systematically propagate the organizers rules and principles to establish a system would create. Third, general operatives internalize the vision of the company stating that the role of outside companies must adhere. The purpose of this study was well done in collaboration organizations promoting factors for strategic alignment model based on the golden circle and collaboration to understand and reflect the latest trends in information technology tools to take advantage of smart work and business know how student teams through case analysis will derive the success factors. This is the foundation for future empirical studies are expected to be present.

  • PDF

Reliability Analysis of VOC Data for Opinion Mining (오피니언 마이닝을 위한 VOC 데이타의 신뢰성 분석)

  • Kim, Dongwon;Yu, Song Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.217-245
    • /
    • 2016
  • The purpose of this study is to verify how 7 sentiment domains extracted through sentiment analysis from social media have an influence on business performance. It consists of three phases. In phase I, we constructed the sentiment lexicon after crawling 45,447 pieces of VOC (Voice of the Customer) on 26 auto companies from the car community and extracting the POS information and built a seven-sensitive domains. In phase II, in order to retain the reliability of experimental data, we examined auto-correlation analysis and PCA. In phase III, we investigated how 7 domains impact on the market share of three major (GM, FCA, and VOLKSWAGEN) auto companies by using linear regression analysis. The findings from the auto-correlation analysis proved auto-correlation and the sequence of the sentiments, and the results from PCA reported the 7 sentiments connected with positivity, negativity and neutrality. As a result of linear regression analysis on model 1, we indentified that the sentimental factors have a significant influence on the actual market share. In particular, not only posotive and negative sentiment domains, but neutral sentiment had significantly impacted on auto market share. As we apply the availability of data to the market, and take advantage of auto-correlation of the market-related information and the sentiment, the findings will be a huge contribution to other researches on sentiment analysis as well as actual business performances in various ways.

A Study on the Effect of SNS Marketing Characheristics on Formation of Hair Shop Image and Visiting Intention (SNS 마케팅 특성이 헤어샵 이미지 형성과 방문의도에 미치는 영향 연구)

  • Kyu-ri Lee;In-Sil Kwak
    • Journal of Digital Policy
    • /
    • v.3 no.2
    • /
    • pp.1-14
    • /
    • 2024
  • The purpose of this study was to analyze the effect of SNS marketing characteristics on hair shop image formation and visit intention in the hair beauty industry. SNS marketing is a strategy to carry out marketing activities through interaction with customers, information provision, information trust, and playfulness using modern social media platforms. It was intended to analyze how these characteristics of SNS marketing affect the formation of hair shop images and visit intention to customers in the hair beauty industry. For the study, a total of 307 customers with experience using hair-related SNS were surveyed. The questionnaire included items related to SNS marketing characteristics, hair shop images, and visit intention, and the collected data was statistically analyzed using SPSS 26.0. The results of the research problem were derived by applying analysis methods such as frequency analysis, factor analysis, reliability analysis, correlation analysis, simple regression analysis, multiple regression analysis, and mediated regression analysis. As a result of the study, it was found that information provision, information reliability, playfulness, and interaction, which are characteristics of SNS marketing, have a positive effect on the formation of hair shop images. In addition, it was confirmed that the hair shop image had a positive effect on the intention to visit. In addition, it was found that the hair shop image plays a mediating role between the SNS marketing characteristics and the intention to visit. This provides important insights that can improve image formation and customer visit intention in the hair beauty industry through SNS marketing.

Image of dental hygienists according to information sources at online or offline: focusing on college preparatory students (온·오프라인 정보수집 경로에 따른 치과위생사 이미지: 대입 준비생을 중심으로)

  • Kyoung-Jin Lee;Hye-Joong Kim;Ji-Eun Um;Joo-Hee Lee;Min-Jeong Ju;Ji-Eun Han;Im-Hee Jung
    • Journal of Korean Dental Hygiene Science
    • /
    • v.6 no.2
    • /
    • pp.13-23
    • /
    • 2023
  • Background: The purpose of this study was to examine the differences in the formation of dental hygienist images based on the pathways of obtaining occupational information and to establish a foundation for the correct perception and positive promotion of the dental hygienist profession. Methods: A survey was distributed to 305 college preparatory students in the metropolitan area. The questionnaire consisted of 34 items, including general characteristics(3 items), pathway-related questions(3 items), dental hygienist image-related question(2 1items), application-related questions(2 items), and admission-related questions(5 items). The images of dental hygienists based on general characteristics, perception pathways, and admission were analyzed using the Mann-Whitney U test and Kruskal-Wallis test. Results: The survey results from all participants showed that the overall image of dental hygienists was 3.75 points. Personal image scored the highest at 4.18 points, while social image was the lowest at 3.20 points(p<0.05). The overall image of dental hygienists was higher for the 'online' group (3.88) compared to the 'offline' group, and statistically significant differences were observed among groups in overall, personal, and professional images(p<0.05). The overall image of dental hygienists was higher for those who learned offline (3.87), and the only significant difference between groups was seen in the personal image. When it came to admission, the 'admitted' students gave a higher overall score (4.00) compared to 'non-admitted' students (3.64), with significance found in all areas except for social image (p<0.05). Conclusion: It is believed that effective utilization of online pathways can inform more people about the importance and expertise of dental hygienists, thereby contributing to promoting oral health and enhancing the perception of the profession. Properly valuing and educating about the role of dental hygienists through promotion and education can help improve the image of the profession.

Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

  • Hong, Taeho;Lee, Taewon;Li, Jingjing
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.187-204
    • /
    • 2016
  • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.

Multi-Category Sentiment Analysis for Social Opinion Related to Artificial Intelligence on Social Media (소셜 미디어 상에서의 인공지능 관련 사회적 여론에 대한 다 범주 감성 분석)

  • Lee, Sang Won;Choi, Chang Wook;Kim, Dong Sung;Yeo, Woon Young;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.51-66
    • /
    • 2018
  • As AI (Artificial Intelligence) technologies have been swiftly evolved, a lot of products and services are under development in various fields for better users' experience. On this technology advance, negative effects of AI technologies also have been discussed actively while there exists positive expectation on them at the same time. For instance, many social issues such as trolley dilemma and system security issues are being debated, whereas autonomous vehicles based on artificial intelligence have had attention in terms of stability increase. Therefore, it needs to check and analyse major social issues on artificial intelligence for their development and societal acceptance. In this paper, multi-categorical sentiment analysis is conducted over online public opinion on artificial intelligence after identifying the trending topics related to artificial intelligence for two years from January 2016 to December 2017, which include the event, match between Lee Sedol and AlphaGo. Using the largest web portal in South Korea, online news, news headlines and news comments were crawled. Considering the importance of trending topics, online public opinion was analysed into seven multiple sentimental categories comprised of anger, dislike, fear, happiness, neutrality, sadness, and surprise by topics, not only two simple positive or negative sentiment. As a result, it was found that the top sentiment is "happiness" in most events and yet sentiments on each keyword are different. In addition, when the research period was divided into four periods, the first half of 2016, the second half of the year, the first half of 2017, and the second half of the year, it is confirmed that the sentiment of 'anger' decreases as goes by time. Based on the results of this analysis, it is possible to grasp various topics and trends currently discussed on artificial intelligence, and it can be used to prepare countermeasures. We hope that we can improve to measure public opinion more precisely in the future by integrating empathy level of news comments.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.