• Title/Summary/Keyword: 소성 회전각

Search Result 52, Processing Time 0.022 seconds

A Study on the Analysis of Plane Framework Considering Nonlinearity of Member and Rotational Stiffness of Connections Joining the Beams to the Columns (부재 비선형과 접합부의 회전강성을 고려한 골조의 해석에 관한 연구)

  • 김경수;윤성기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.319-329
    • /
    • 1999
  • 본 연구에서는 골조의 안정과 구조적인 거동에 영향을 미치는 2차 효과에 의한 기하학적 비선형 문제, 세장비가 작은 부재 단면의 소성, 보-기둥 접합부의 상태, 그리고 부재 내부에 발생되어 있는 기하학적 초기결함을 고려한 복합적인 비선형 해석프로그램을 개발하여, 철골조 구조물의 거동을 근사적으로 예측하고자 한다. 그리고, 각 비선형 해석의 신뢰성을 검증하고, 상호관계를 파악되기 위해서 각 해석에 따른 좌굴하중과 거동을 비교 검토한다.

  • PDF

Evaluation of the Initial Rotational Stiffness of a Double Split Tee Connection (상·하부 T-stub 접합부의 초기회전강성 평가)

  • Kim, Hee Dong;Yang, Jae Guen;Lee, Jae Yun;Lee, Hyung Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.133-142
    • /
    • 2014
  • Double split tee connection is a full strength-partial restrained connection that suitable for ordinary moment frame and special moment frame which demonstrates behavior characteristics depending on the stiffness ratio of columns and beams, changes in the geometric shape of the T-stub, number of fasteners and effect of panel zone. For the double split tee connection to ensure structurally safe behavior, it needs to exhibit sufficient strength, stiffness and ductile capacity. This study sought to investigate the effects of the moment-rotation angle relationship of the double split tee connection and to evaluate the initial rotational stiffness of the double split tee connection depending on changes in the geometric shape of the T-stub. To this end, two different double split tee connection specimens are experimented which designed to change geometric parameter values (${\alpha}^{\prime}$) of the T-stub, and a three-dimensional finite element analysis was performed.

Effect of Drift Pin Arrangement for Strength Property of Glulam Connections (드리프트 핀의 배열 형태가 집성재 접합부의 회전 거동 및 강도 성능에 미치는 영향)

  • Lee, In-Chan;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.10-21
    • /
    • 2007
  • It is necessary to study about moment performance of glulam-dowel connections which had been applied rotation. To analyze and predict the moment performance, angled to grain load was replaced with parallel to grain load and perpendicular to grain load. The dowel bending strength and dowel bearing strength were tested. And tensile strength test for connections of two different end distances was performed. Specimens of rotation test were composed with different drift pin numbers and drift pin arrangement. Connection deformation was occurred by plastic behavior of drift pin after yield when tensile load applied at connection. And the absorbing drift pin deflection by end distance continued the connection deformation. When rotation applied at connection that 2 drift pins were arranged parallel to grain (b2h), it showed similar performance with tensile perpendicular to grain. And connection that 2 drift pins were arranged perpendicular to grain (b2v) showed similar performance with tensile parallel to grain. Connection capacity that 4 drift pins were arranged rectangular (b4) showed 1.7 times as strong as connection that 2 drift pins were arranged parallel to grain (b2h). These results agreed predicted values and it is available that rotation replaced with tensile load.

Overstrength and Response Modification Factor in Low Seismicity Regions (약진지역에서의 초과강도 및 반응수정계수)

  • Lee, Dong-Guen;Cho, So-Hoon;Ko, Hyun;Kim, Tae-Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.57-64
    • /
    • 2006
  • Seismic design codes are mainly based on the research results for the inelastic response of structures in high seismicity regions. Since wind loads and gravity loads may govern the design in low seismicity regions in many cases, structures subjected to design seismic loads will have larger overstrength compared to those of high seismicity regions. Therefore, it is necessary to verify if the response modification factor based on high seismicity would be adequate for the design of structures in low seismicity regions. In this study, the adequacy of the response modification factor was verified based on the ductility and overstrength of building structures estimated from the result of nonlinear static analysis. Framed structures are designed for the seismic zones 1, 2A, 4 in UBC-97 representing the low, moderated and high seismicity regions and the overstrength factors and ductility demands of the example structures are investigated. When the same response modification factor was used in the design, inelastic response of structures in low seismicity regions turned out to be much smaller than that in high seismicity regions because of the larger overstrength of structures in low seismicity regions. Demands of plastic rotation in connections and ductility in members were much lower in the low seismicity regions compared to those of the high seismicity regions when the structures are designed with the same response modification factor.

A Balanced Panel Zone Strength Criterion for Reduced Beam Section Steel Moment Connections (보 플랜지 절취형 (RBS) 철골 모멘트 접합부의 균형패널존 강도)

  • Lee, Cheol Ho;Kim, Jae Hoon;Jeon, Sang Woo;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2006
  • This paper presents test results on reduced beam section (RBS)program addressed panel zone (PZ) strength as the key variables. PZ strength has been much debated issue for several decades. A desirable range of PZ strength has not yet been proposed despite the fact that a significant amount of RBS test data is available. Test results from this study and by others showed that panel zones could easily develop a plastic rotation of 0.01 radian without causing distress to the beam flange groove welds. At this deformation level, the amount of beam distortion (i.e., buckling) was about one half that developed in strong PZ specimens. A criterion for a balanced PZ strength that improves the plastic rotation capacity while reducing the amount of beam buckling is proposed.

A Study on the Seismic Performance Improvement of Mid and Low-Rise RC Grid Structures Using Steel Slab Hysteretic Damper (강재 슬래브 이력형 댐퍼(SSHD)를 이용한 중·저층 RC 격자 구조물의 내진성능 향상에 관한 연구)

  • Kim, Dong Baek;Lee, In Duk;Choi, Jung Ho
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.3
    • /
    • pp.418-426
    • /
    • 2019
  • Purpose: After analyzing the seismic capability of low-rise RC grid structures with insufficient seismic performance, the purpose of the project is to install steel slab hysteretic dampers (SSHD) to improve the seismic performance of beams and columns, and to suggest measures to minimize damage to the structure and human damage when an earthquake occurs. Method: The evaluation of the seismic performance of a structure is reviewed based on the assumption that the seismic performance is identified for the grid-type subway systems that are not designed to be seismic resistant and the installation of an SSHD system, a method that minimizes construction period, if insufficient, is required. Result: After the application and reinforce of structure with SSHD, and the results of eigenvalue analysis are as follows. The natural periodicity of longitudinal direction was 0.55s and that of vertical direction was 0.58s. Conclusion: As results of cyclic load test of structure with SSHD, the shear rigidity of damper is 101%, the energy dissipation rate is 108% and, plastic rotation angle of all column and beam is satisfied for $I_o$ level and therefore it is judged that the reinforce effect is sufficient.

Flexural Overstrength of Reinforced Concrete Bridge Columns for Capacity Design (철근콘크리트 교각의 성능보장설계를 위한 휨 초과강도)

  • Lee, Jae-Hoon;Ko, Seong-Hyun;Choi, Jin-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.85-97
    • /
    • 2006
  • Capacity design is to guarantee ductile failure of whole bridge system by preventing brittle failure of columns and any other structural elements until the columns develope fully enough plastic deformation capacity. This concept has been explicitly regulated in most bridge design specifications of foreign countries except the current Korea Bridge Design Specifications. In the capacity design, the transformed shear force from flexural overstrength of reinforced concrete column is used as the design lateral shear force for shear design of columns and design of footings and piles. Different calculating methods are adopted by the design specifications, since the variability of material strength and construction circumstances of the local regions should be considered. This paper proposed material overstrength factors by investigating 3,407 reinforcing bar data and 5,405 concrete compressive strength data collected in Korean construction sites. It also proposed calculating procedures for flexural overstrength of reinforced concrete columns using the material overstrength. Finally, overstrength factor was proposed as 1.5 by investigating 1,500 column section data from moment-curvature analysis using the material overstrength.

Seismic Analysis of Mid Rise Steel Moment Resisting Frames with Relative Stiffness of Connections and Beams (접합부와 보의 상대강성을 고려한 중층 철골 모멘트 골조의 내진해석)

  • Ha, Sung-Hwan;Kang, Cheol-Kyu;Han, Hong-Soo;Han, Kweon-Gyu;Choi, Byong-Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.595-606
    • /
    • 2011
  • This study was conducted to investigate the seismic behavior of steel member resisting frames considering the relative stiffness of the connection and beams. Six-story steel moment frames were designed to study the seismic behavior. The connections were classified into Double Web-Angle connections (DWAs), Top- and Seat-angles with double Web-angles (TWSs), FEMA-Test Summary No. 28, Specimen ID: UCSD-6 (SAC), and Fully Restrained (FR). The rotational stiffness of the semi-rigid connections was estimated using the Three-Parameter Power Model adopted by Chen and Kishi. The relative stiffness, which is the ratio of the rotational stiffness of the connections to the stiffness of the beams, was used. Push-over, repeated loading, and time history analysis were performed for all the frames. The seismic behavior of each frame was analyzed with the story drift, plastic hinge rotation, and hysteretic energy distribution.

Development of a Coupled Eulerian-Lagrangian Finite Element Model for Dissimilar Friction Stir Welding (Coupled Eulerian-Lagrangian기법을 이용한 이종 마찰교반용접 해석모델 개발)

  • Lim, Jae-Yong;Lee, Jinho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.7-13
    • /
    • 2019
  • This study aims to develop a FE Model to simulate dissimilar friction stir welding and to address its potential for fundamental analysis and practical applications. The FE model is based on Coupled Eulerian-Lagrangian approach. Multiphysics systems are calculated using explicit time integration algorithm, and heat generations by friction and inelastic heat conversion as well as heat transfer through the bottom surface are included. Using the developed model, friction stir welding between an Al6061T6 plate and an AZ61 plate were simulated. Three simulations are carried out varying the welding parameters. The model is capable of predicting the temperature and plastic strain fields and the distribution of void. The simulation results showed that temperature was generally greater in Mg plates and that, as a rotation speed increase, not the maximum temperature of Mg plate increased, but did the temperature of Al plate. In addition, the model could predict flash defects, however, the prediction of void near the welding tool was not satisfactory. Since the model includes the complex physics closely occurring during FSW, the model possibly analyze a lot of phenomena hard to discovered by experiments. However, practical applications may be limited due to huge simulation time.

An Analysis of Thermal Stress and Angular Distortion in Bead-on-Plate Welding Incorporating Constrained Boundary Conditions (판재의 비드 용접에서 구속경계조건을 적용한 열응력 및 각변형 해석)

  • 배강열;최태완
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.104-115
    • /
    • 1999
  • There have been many studies on the two dimensional thermo-elasto-plastic analysis in welding process, mostly from viewpoint of residual stresses. In this study, the temperature distribution, transient thermal stress, and angular distortion during bead-on-plate gas metal arc welding of rectangular plates were analyzed by using the finite element method. A nonlinear heat transfer analysis was first performed by taking account of the temperature-dependent material properties and convection heat losses on the surface. This was followed by a thermo-elasto-plastic stresses and distortion analysis that incorporates the constrained boundary condition of the two dimensional solution domain to get the three dimensional size effect of the plate. The constrained boundary conditions adopted in this study were the constant displacement condition over the whole two dimensional section for axial movement in the welding direction, and the force boundary condition for rotational movementof the domain around the axis of the welding direction. It could be revealed that the theoretical predictions of the angular distortion have an improved agreement with the experimentally obtained data presented in the previous study.

  • PDF