• Title/Summary/Keyword: 소성 해석

Search Result 2,059, Processing Time 0.023 seconds

Con Rod 성형성 해석

  • 박찬운;이재욱;주춘식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.06a
    • /
    • pp.91-98
    • /
    • 2005
  • PDF

Numerical Analysis of the Visco-plastic Behavior of Rock Mass Considering Continuum Joints and Rock Bolt Elements (연속체 절리와 록볼트 요소를 고려한 암반의 점소성 거동에 관한 수치해석)

  • 노승환;이정인;이연규
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.215-228
    • /
    • 2004
  • Rock mass contains discontinuities such as faults and joints, and their mechanical properties and spatial distribution dominate the stability of rock mass. Because the deformation of rock mass occurs discontinuities in many cases. However in the case of poor quality rock mass under high stresses, the deformation along intact rock can also influence the structure's stability. In this study, two dimensional finite element program was developed with a rheological model to analyze the stability of the structure excavated in jointed rock mass. The “equivalent material” approach was used assuming intact rock, joints and rock bolts as visco-plastic materials. The program was verified by analysing an intact rock model, a jointed rock mass model and a reinforced jointed rock mass model. The displacement was examined in each model with changing the intact rock behaviour as elastic and visco-plastic. In the case of poor quality rock mass under high stresses, e assumption of visco-plastic behaviour of intact rock resulted in larger displacement than when assuming elastic behaviour for intact rock. Therefore it is recommended to add intact rock's visco-plastic behaviour to the existing model, which only assumes visco-plastic behaviour of joints and rock bolts.

A Study on Generalization of Cyclic Plasticity Model and Application of 3-Dimensional Elastic-Plastic FEM of SM570 (SM570강재의 반복소성모델의 정식화 및 3차원 탄소성 유한요소적용에 관한 연구)

  • 장경호;장갑철;이은택
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.59-65
    • /
    • 2004
  • Recently, as steel structures become higher and more long-spanned, application of high strength steel. SM570, is considered, For accurate seismic design, seismic analysis of steel structures needs a constitutive equation describing the characteristic of steel materials under non-proportional cyclic loading, While the use of SM570 material is much increased these days, research for description and generalization of cyclic plasticity behavior are insufficient, In this study, a cyclic plasticity model is proposed by results of material tests, i.e, monotonic and low cycle tests, Proposed cyclic plasticity model is applied to 3-Dimensional FE program and we carried out seismic analysis of pipe-section steel pier using SM570, Comparison between experiment and analysis results shows that the proposed constitutive equation is able to describe exactly the complicated plastic behavior of steel structure using SM570.