• Title/Summary/Keyword: 소나무 후계림

Search Result 3, Processing Time 0.019 seconds

A Study on the Management Method in Accordance with the Vegetation Structure of Geumgang Pine (Pinus densiflora) Forest in Sogwang-ri, Uljin (울진 소광리 금강소나무림 식생구조 특성에 따른 관리방안)

  • Kim, Dong-Wook;Han, Bong-Ho;Park, Seok-Cheol;Kim, Jong-Yup
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.1
    • /
    • pp.1-19
    • /
    • 2022
  • The Geumgang Pine (Pinus densiflora) Forest in Sogwang-ri, Uljin has traditionally been a pine tree protection area (prohibited forest) for timber production purposes, and is now designated and managed as a protected area for forest genetic resource conservation by the Korea Forest Service. This study, we analyzed topographical characteristics, existing vegetation, tree age, and plant community structure, and proposed a sustainable management method for the Geumgang Pine (Pinus densiflora) Forest in Sogwang-ri, Uljin for timber havesting purposes. The topographical characteristics of the target area were 36.7% ridges and 38.7% valleys; the ratio of ridges to valleys was similar, and the slopes formed 24.7% of the total area. The types of pine forest communities are divided into six types based on the progress of pine forest renewal, the competition with other species such as deciduous broadleaf trees, and the formation of layered structures. It has been confirmed that the age of the large-diameter pine trees (40~60cm in diameter) is approximately 60~70 years, which is relatively low. As a result of the analysis of the relative importance percentage and layered structure, differences depended on the progress of the pine forest renewal project, and not only the maintenance of the pine forest, but also the creation of a secondary growth forest, the density adjustment of pine trees, and the active management of competitive trees. The average basal area by the community was 12,642.1~25,424.4cm2 for the tree layer and 1.8~1,956.5cm2 for the low tree layer based on a quadrat of 400m2. The difference in the basal area appeared to depend on the size and number of trees forming the tree layer and the degree of pine forest renewal (the degree of time elapsed after thinning pine trees). The average number of species that appeared in each community was 8.7-20.3; there were many species located in valleys, and the type competes with deciduous broadleaf trees due to the lack of management. The diversity of species ranged from 0.6915-1.0942, and was evaluated as low compared to pine communities in central temperate zones. In this paper, we determined the management goals of Geumgang Pine (Pinus densiflora) Forest in Sogwang-ri, Uljin to produce timber with high economic value, and suggested efficient vegetation management for continuous afforestation, the establishment of a timber production system, and improvement of wood production as a management direction.

Management Planning and Change for Nineteen Years(1993~2011) of Plant Community of the Pinus densiflora S. et Z. Forest in Namhan Mountain Fortress, Korea (남한산성 소나무림의 19년간(1993~2011년) 식생구조 변화와 관리방안)

  • Lee, Kyong-Jae;Han, Bong-Ho;Lee, Hak-Gi;Noh, Tai-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.559-575
    • /
    • 2012
  • This study, targeting Namhan Mountain Fortress which was designated as a No. 57 national historic site and placed on the World Heritage Tentative List in 2010, was intended to identify the change of vegetation structures by reviewing past references, pictures, research data and additionally conducting a site survey. Also, it was designed to draw up measures for restoring vegetation suitable for historically and culturally valuable Namhan Mountain Fortress. According to the biotope mapping of study site, Quercus spp. forest distributed a greatest part of area with 40.8% of $2,611,823m^2$. Pinus densiflora forest, highly likely to go through ecological succession, was dispersed in the whole region of Cheongryangsan, the area from West Gate to North Gate and the ranges between South Gate to Cheongryangsan with taking 16.5%. Pinus densiflora forest with a low probability of succession amounted to 4.7% and was dispersed mainly in the forest behind Namhansan elementary school. Pinus densiflora going on the ecological succession is distributed a portion of 2.9%. And the currently dying out Pinus densiflora forest amounted to 2.1%. As a result of analysis of the vegetation structure for 19 years, the succession from Pinus densiflora forest to Pinus densiflora and succession from Quercus spp. mixed forest to Quercus spp. forest to Carpinus laxiflora forest were predicted. Additionally, Quercus spp. expanded its dominance over time. According to the characteristics of each classified zone, the site was categorized into $553,508m^2$ area of Pinus densiflora forest area for the landscape maintenance, $114,293m^2$ area of Pinus densiflora forest area for the landscape restoration, $205,306m^2$ area of Pinus densiflora forest area for the disclimax, and $1,169,973m^2$ area of Pinus densiflora forest area for inducing ecological succession.

Seed Inflow Characteristics of the Korean Red Pine according to Harvest Type in Natural Regeneration Forests (소나무 천연갱신지의 목재수확 유형별 종자 유입 특성)

  • Junmo Chung;Sang Tae Lee;Hyun Seop Kim;Sang Hoon Chung
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.331-339
    • /
    • 2023
  • This study was conducted to identify seed inflow characteristics according to harvest typeand to provide basic data for developing a regeneration technology for secondary growth forests in Korean red pine (Pinus densiflora) succession forest formation by natural regeneration. Experimental sites were established by applying seed tree (single and group) and clear-cutting methods (10- 20- 30-m strip and 20- 30- 40-m patch). The seed inflow characteristics of the natural regeneration site were analyzed for 6 years from 2014. Most seeds were flowed to the regeneration stand from October to November. In years with good seed fructification, more than 80% were flowed in October. The average annual seed inflow by harvest type was highest in the seed tree area (296,000 seeds/ha/yr), followed by the 20-m patch clear-cutting area (291,000 seeds/ha/yr) and 10-m strip clear-cutting area (281,000 seeds/ha/yr). The distribution uniformity of seed inflow according to treatment was analyzed in the order of the 20-m strip clear-cutting area (52.2), 20-m patch clear-cutting area (52.9), and 10-m strip clear-cutting area (56.1). As a result, the 10-m strip and 20-m patch clear-cutting areas with relatively small harvest areas showed high seed inflow and distribution uniformity.