• Title/Summary/Keyword: 소나돔

Search Result 13, Processing Time 0.02 seconds

Variation of the structural stability for the sonar dome window in a naval vessel according to the state of the drain valve (소나돔 충, 배수 밸브의 상태에 따른 함정용 소나돔 윈도우의 구조안정도 변화)

  • Han, HyungSuk;Lee, KyungHyun;Park, SeongHo;Lim, YongSoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.844-853
    • /
    • 2014
  • Since the active sonar for a naval vessel is usually installed in a bulbous bow, GRP(Glass reinforced plastic) material with low density and high strength is used for the material of the sonar dome window in order to prohibit impact by slamming wave or foreign material in the sea. The structural safety of the sonar dome is varied according to the interior and exterior distributed pressure on the sonar dome. Therefore, the variation of the structural safety according to the pressure variation of the sonar dome window caused by the drain valve state is studied by CAE.

Parametric Array를 이용한 음향창 시편 시험 방법에 대한 연구

  • Hwang, Eun-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.768-768
    • /
    • 2011
  • 선박/잠수함에 설치하는 소나(sonar)는 외부 해양 환경 및 유체 흐름을 위해 소나 돔을 설치하여 운용한다. 하지만 소나 돔 설치로 인해 핵심 기능인 음향신호 송/수신 기능 저하를 야기 시킨다. 따라서 소나돔을 설계시, 구조적으로는 수중 폭팔 등의 각종 하중으로부터 센서를 보호할 수 있도록 설계하고 음향적으로는 음파의 송수신 신호를 저하시키지 않는 재질을 고려하여 설계 및 제작을 하여야 한다. 소나돔에 의한 음향 손실을 최소화하기 위하여 설계 시, 소나돔음향창 시편을 통하여 음향신호가 이를 투과하면서 생기는 신호 왜곡 혹은 투과 손실 측정을 수행한다. 제한된 크기의 수조 시험장에서 투과 손실이 측정이 되는데, 음원 반사, 회절(diffraction) 등의 문제로 인하여 다양한 주파수 대역에서의 측정이 불가피 하다. 이때, 좁은 빔폭 (Beamwidth)을 갖는 Parametric array를 이용하여 음원 회절이 생기지 않는 범위 내에서 음향창 시편의 크기를 최소화 시킬 수 있으며 제한된 공간에서도 효율적으로 음향창 시편의 투과 손실을 측정 할 수 있다. 본 논문에서는 parametric array를 이용하여 음향창 시편의 크기를 최소화 하고 이를 이용하여 음향창 투과 손실을 측정하는 연구를 수행하였다.

  • PDF

Impact Analysis for Sonar Domes Collided with Logs (수중 부유물에 의한 소나돔 충격해석)

  • Kang, Myung-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.564-571
    • /
    • 2011
  • During navigation of warships, sonar domes have been damaged by collision with floating objects like logs. In order to analyze the damage of a sonar dome from collisions with a log, The analytical method and the numerical analysis using ABAQUS are performed. Throughout the analytical method, the mechanism of collision between a sonar dome and log is analyzed. To design a sonar dome, the numerical analysis for A type sonar dome and the B type sonar dome have done considering fluid loading effect around the sonar domes with normal and maximum speeds of the ship, respectively. The numerical analysis results of the A type sonar dome and the B type sonar dome are compared and analyzed.

Investigation of Flow Noise Source of Hull Mounted Sonar Dome (선저 소나돔의 유체소음원 특성 분석)

  • Shin, Ku-Kyun;Kang, Myengwhan;Yi, Jong-Ju;Seo, Youngsoo;Lee, Kyung-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.575-576
    • /
    • 2014
  • The Hull Mounted Sonar Dome housing the sonar sensor array is a ship's structure protruded from ship bottom, which is under turbulent flow. The flow of sonar surface is highly disturbed and turbulent. In this case the wall pressure fluctuations within the turbulent boundary layer are one of the most important flow induced self noise sources of the SONAR system. We investigate the characteristics of the wall pressure fluctuations of the hull mounted sonar dome through the model test in the cavitation tunnel. This paper contains the wall pressure fluctuation spectra at various free stream velocities.

  • PDF

Numerical analysis of acoustic field inside sonar dome by using a beam tracing method and the theory of elastic wave propagation (빔 추적기법과 다층구조에서의 탄성파 전파이론을 적용한 소나돔 내부 음장 수치해석)

  • Han, Seung-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.26-33
    • /
    • 2006
  • A sonar dome is basically designed and installed to protect sonar array from shocks, sea wave slaps and floating matters. The acoustic wave passing through sonar dome, however, can be distorted in magnitude and phase. This paper presents a numerical method for predicting the steady-state sound pressure on the surface of transducer array in the sonar dome and typical results of sonar beam pattern affected by sonar dome. A beam tracing model with phase information and a multi-layered elastic boundary model are involved. A full three-dimensional sonar dome is modeled as a GRP acoustic window, a rubber coated steel baffle and a rubber coated steel hull. A transducer array is modeled as thick steel cylinder. There are some assumptions such as incidence of plane wave, specular reflection on boundary and directionality of transducer element.

Conceptual Design of Cylindrical Hydrophone Arrays for Stabilization of Receiving Characteristics under Ocean Ambient Noise (해양 배경 소음 하의 수신 특성 안정화를 위한 원통형 하이드로폰 배열의 개념 설계)

  • Noh, Eunghwy;Lee, Hunki;Ohm, Won-Suk;Chang, Woosuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.200-209
    • /
    • 2015
  • An underwater sound surveillance system detects and tracks enemy ships in real-time using hydrophone arrays, in which seabed-mounted sensor arrays play a pivotal role. In this paper the conceptual design of seabed-mounted, cylindrical hydrophone arrays for use in shallow coastal waters is performed via finite element calculations. To stabilize the receiving characteristics under the ocean ambient noise, a technique for whitening the ambient noise spectrum using a metal baffle is proposed. Optimization of the array configuration is performed to achieve the directivity in the vertical and azimuthal directions. And the effects of the sonar dome shape and material on the structural vibration and sound scattering properties are studied. It is demonstrated that a robust hydrophone array, having a sensitivity deviation less than 4 dB over the frequency range of interest, can be obtained through the whitening of the ambient noise, the optimization of the array configuration, and the design of acoustically transparent sonar domes.

Turbulent-induced Noise of 2-dimensional Sonar Dome Shaped Structure (2차원 소나돔 형상 구조물의 난류유동소음 해석)

  • Choi, Yo-Seb;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Choi, Woen-Sug;Jung, Chul-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2016
  • The latest research has shown that the turbulence-induced noise is important in total characteristics of flow noise. Also, turbulence-induced noise have a significant influence for performance of sonar dome. In this paper, Flow analysis is performed on vicinity of the sonar dome model using Large Eddy Simulation method. Also, direct method that extracts perturbational sound pressure, FW-H method without turbulence-induced noise and permeable FW-H method that is able to calculate turbulence- induced noise were compared in order to show turbulence effect.

A Study on the Measurement and Analysis Method for the Acoustic Transmission Loss of the Material for the Acoustic Window of Sonar Dome (소나 돔 음향창 시편 투과손실 측정/분석 방법 고찰)

  • Jung, Woo-Jin;Han, Seung-Jin;Kim, Won-Ho;Shin, Ku-Kyun;Jeon, Jae-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.729-738
    • /
    • 2006
  • Knowledge of acoustic transmission loss of acoustic window material has a great importance for the sonar performance in ship. The purpose of this study was to investigate the measurement and analysis method for the acoustic transmission loss of the acoustic window materials for sonar dome. The measurement and analysis were carried out in water with GRP material. Transmission losses were calculated based on integrated direct and transmitted signals. The experimental setup enabled to vary the angle of incidence. Thus the transmission loss data could be expressed as the function of frequency and angle of rotation. In this paper, diffraction effect of incident angle, size of specimen with test material, transmission analysis method and multiple waves as incident acoustic signal were discussed.

A Study on the Measurement and Analysis Method for the Acoustic Transmission Loss of the Material for the Acoustic Window of Sonar Dome (소나 돔 음향창 시편 투과손실 측정/분석 방법 고찰)

  • Jung, Woo-Jin;Han, Seung-Jin;Kim, Won-Ho;Shin, Ku-Kyun;Jeon, Jae-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1183-1189
    • /
    • 2006
  • Knowledge of acoustic transmission loss of acoustic window material has a great Importance for the sonar performance in ship. The purpose of This study was to investigate the measurement and analysis method for me acoustic transmission loss of the acoustic window materials for sonar dome. The measurement and analysis were carried out in water with GRP material. Transmission losses were calculated based on integrated direct and transmitted signals. The experimental setup enabled to vary the angle of incidence. Thus the transmission loss data could be expressed as the function of frequency and angle of rotation. In this paper, diffraction effect of incident angle, size of specimen with test material, transmission analysis method and multiple waves as incident acoustic signal wet-e discussed

  • PDF