• Title/Summary/Keyword: 소결응력

Search Result 48, Processing Time 0.024 seconds

Effect of h-BN Content on Microstructure and Mechanical Properties of AIN Ceramics (AIN 세라믹스의 미세조직과 기계적 성질에 미치는 h-BN 첨가의 영향)

  • 이영환;김준규;조원승;조명우;이은상;이재형
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.874-880
    • /
    • 2003
  • The effect of h-BN content on microstructure, mechanical properties, and machinability of AlN-BN based machinable ceramics were investigated. The relative density of sintered compact decreased with increasing h-BN content. The four-point flexural strength also decreased from 238 MPa of monolith up to 182 MPa by the addition of 30 vol% h-BN. Both low Young's modulus and residual tensile stress, formed by the thermal expansion coefficient difference between AIN and h-BN, might cause the strength drop in AlN-BN composite. The crack deflection, and pull-out phenomena increased by the plate-like h-BN. However, the fracture toughness decreased with h-BN content. The second phases, consisted of YAG and ${\gamma}$-Al$_2$O$_3$, were formed by the reaction between Al$_2$O$_3$ and Y$_2$O$_3$. During end-milling process, feed and thrust forces measured for AlN-(10~30) vol% BN composites decreased with increasing h-BN particles, showing excellent machinability. Also, irrespective of h-BN content, relatively good surfaces with roughness less than 0.5 m (Ra) could be achieved within short lapping time.

Study on Flexural Properties of Polyamide 12 according to Temperature produced by Selective Laser Sintering (선택적 레이저 소결 제작 폴리아미드 12 시편의 온도별 굴곡 특성 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.319-325
    • /
    • 2018
  • The use of 3D printing (Additive Manufacturing) technology has expanded from initial model production to the mass production of parts in the industrial field based on the continuous research and development of materials and process technology. As a representative polymer material for 3D printing, the polyamide-based material, which is one of the high-strength engineering plastics, is used mainly for manufacturing parts for automobiles because of its light weight and durability. In this study, the specimens were fabricated using Selective Laser Sintering, which has excellent mechanical properties, and the flexural characteristics were analyzed according to the temperature of the two types of polyamide 12 and glass bead reinforced PA12 materials. The test specimens were prepared in the directions of $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$ based on the work platform, and then subjected to a flexural test in three test temperature environments of $-25^{\circ}C$, $25^{\circ}C$, and $60^{\circ}C$. As a result, PA12 had the maximum flexural strength in the direction of $90^{\circ}$ at $-25^{\circ}C$ and $0^{\circ}$ at $25^{\circ}C$ and $60^{\circ}C$. The glass bead-reinforced PA12 exhibited maximum flexural strength values at all test temperatures in the $0^{\circ}$ fabrication direction. The tendency of the flexural strength changes of the two materials was different due to the influence of the plane direction of the lamination layer depending on the type of stress generated in the bending test.

Analysis of Apparent Fracture Toughness of a Thick-Walled Cylinder with an FGM Coating at the Inner Surface Containing a Radial Edge Crack (반경방향의 모서리 균열을 갖고 내면이 경사기능재료(FGM)로 코팅된 두꺼운 실린더의 겉보기 파괴인성해석)

  • Afsar, A.M.;Rasel, S.M.;Song, J.I.
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • This study analyzes the apparent fracture toughness of a thick-walled cylinder with a functionally graded material (FGM) coating at the inner surface of the cylinder. The cylinder is assumed to have a single radial edge crack emanating from its inner surface. The crack surfaces and the inner surface of the cylinder are subjected to an internal pressure. The incompatible eigenstrain developed in the cylinder due to nonuniform coefficient of thermal expansion as a result of cooling from sintering temperature is taken into account. Based on a method of evaluating stress intensity factor introduced in our previous study, an approach is developed to calculate apparent fracture toughness. The approach is demonstrated for a cylinder with a TiC/$Al_{2}O_{3}$ FGM coating and some numerical results of apparent fracture toughness are presented graphically. The effects of material distribution profile, cylinder wall thickness, application temperature, and coating thickness on the apparent fracture toughness are investigated in details. It is found that all of these factors play an important role in controlling the apparent fracture toughness of the cylinder.

Control of Crowning Using Residual Stress induced by the Difference of Tehermal Expansion Between Ceramic and Carbon Steel in Ceramic Cam Follower (열팽창계수차에 기인된 잔류응력을 이용한 세라믹 캠 팔로우어의 크라우닝 제어)

  • Choe, Yeong-Min;Lee, Jae-Do;No, Gwang-Su
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.703-708
    • /
    • 2000
  • As the engine design changes to get high efficiency and performance of commercial diesel engine, surface w wear of the earn follower becomes an important issue as applied load increasing at the contact face between cam follower and cam. We developed the ceramic cam follower made of sili$\infty$n nitride ceramic which was more wear resistant than the cast iron or sintered metal cam follower. Ceramic cam follower was made by direct brazing of thin ceramic disk to steel body using an active brazing alloy without the interlayer. In-situ crowning(R), resulted from the difference of thermal expansion coefficient between ceramic and carbon steel after direct brazing without any stress-relieving inter]ayer, could be controlled. When a earbon steel was heated above $A_{c1}$ point and then c$\infty$led, the expansion curve represented a hysteresis. Appropriate crowning was achieved below the $A_{c1}$ point(about $723^{\circ}C$) and crowning increased with brazing temperature exponentially above the $A_{c1}$ point. Optimum brazing temperature range was from 700 to $720^{\circ}C$. We developed successfully the ceramic cam follower having appropriate crowning and being inexpensive. Also we could successfully control the crowning of ceramic earn follower by hysteresis behavior of thermal expansion of earbon steel during direct brazing process.

  • PDF

Study on the shaping process of turbocharger nozzle slide joint (터보차저 노즐 슬라이드 조인트의 정형공정에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • A turbocharger is an engine supercharger that is driven by exhaust gas. It improves the output and fuel efficiency by increasing the charging efficiency of the mixture gas, which is achieved by changing the rotatory power of the turbine connected to the exhaust passage. It is important to control the supercharging for this purpose. A nozzle slide joint is one of the core parts. Austenitic stainless steel is currently used as the material for this part, and its excellent mechanical properties include high heat resistance and corrosion resistance. However, because of its poor machinability, there are many difficulties in producing products with complicated shapes. Machining is used in the production of nozzle slide joints for high dimensional accuracy after metal powder injection molding. As design variables in this study, we investigated the sintering temperature, product stress, deformation rate, radius of curvature of the punch, and angle of the chamfer punch, which are related to the strain and shapes. The goal is to suggest a forming process using Nitronic 60 that does not require machining to manufacture a nozzle slide joint for a turbocharger. Accordingly, we determined the best process environment using finite-element analysis, the signal-noise ratio, and the Taguchi method for experiment design. The relative density and hydrostatic pressure of the final product were in accordance with the results of the finite element analysis. Therefore, we conclude that the Taguchi method can be applied to the design process of metal powder injection molding.

Effect of Tetragonal $ZrO_2$ Addition on the Mechanical Properties of $\alpha$-Alumina/La-\beta-Aluminate $Composite (정방정 $ZrO_2$의 첨가가 $\alpha$-Alumina/La-\beta-Aluminate $ 복합체의 기계적 성질에 미치는 영향)

  • Suk-Won Kang;Hai-Doo Kim;Shin Kim;Soo-Young Lee;Dong-Soo Park
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.513-519
    • /
    • 1994
  • Alumina composite was fabricated by introducing tetragonal ZrO2 in alumina composite of $\alpha$-alumina reinforced with in-situ formed La-$\beta$-aluminate (LaAl11O18). The powder mixture of composition (100-x)[88 Al2O3+(La2O3+11 Al2O3)]+x vol% ZrO2 was prepared with x from 0 to 40. Dense composites fabricated by hot-pressing exhibited bending strength up to 1200 MPa. The gain growth inhibiting effect of ZrO2 grains and La-$\beta$-aluminate platelets, and possibly the stress-induced phase transformation of ZrO2 have resulted in the high bending strength. The fracture toughness of the composite also increased up to 8.5 MPa.m1/2. The enhancement in toughness can be explained by transformation and microcrack toughening of ZrO2 and by crack deflection and bridging of La-$\beta$-aluminate platelets and ZrO2.

  • PDF

Review on additive manufacturing of dental materials (치과용 재료의 적층가공에 대한 문헌고찰)

  • Won, Sun;Kang, Hyeon-Goo;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • Additive manufacturing (AM) for dental materials can produce more complex forms than conventional manufacturing methods. Compared to milling processing, AM consumes less equipment and materials, making sustainability an advantage. AM can be categorized into 7 types. Polymers made by vat polymerization are the most suitable material for AM due to superior mechanical properties and internal fit compared to conventional self-polymerizing methods. However, polymers are mainly used as provisional restoration due to their relatively low mechanical strength. Metal AM uses powder bed fusion methods and has higher fracture toughness and density than castings, but has higher residual stress, which requires research on post-processing methods to remove them. AM for ceramic use vat polymerization of materials mixed with ceramic powder and resin polymer. The ceramic materials for AM needs complex post-processing such as debinding of polymer and sintering. The low mechanical strength and volumetric accuracy of the products made by AM must be improved to be commercialized. AM requires more research to find the most suitable fabrication process conditions, as the mechanical properties and surface of any material will vary depending on the processing condition.

Effect of various surface treatment methods of highly translucent zirconia on the shear bond strength with resin cement (고투명도 지르코니아의 다양한 표면처리 방법이 레진시멘트와의 전단결합강도에 미치는 영향)

  • Yu-Seong Kim;Jin-Woo Choi;Hee-Kyung Kim
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.3
    • /
    • pp.179-188
    • /
    • 2023
  • Purpose. The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength of two types of zirconia (3-TZP and 5Y-PSZ) with resin cement. Materials and methods. Two different types of zirconia specimens with a fully sintered size of 14.0×14.0×2.0 mm3 were prepared, polished with 400, 600, and 800 grit silicon carbide paper, and buried in epoxy resin. They were classified into four groups each control, sandblasting, primer, and sandblasting & primer. Cylindrical resin adhered to the surface-treated zirconia with resin cement. It was stored in distilled water (37℃) for 24 hours, and a shear bond strength test was performed. The normality of the experimental group was confirmed with the Kolmogorov-Smirnov & Shapiro-Wilk test. The interaction and statistical difference were analyzed using a two-way ANOVA. A post-hoc analysis was performed using Dunnett T3. Results. As a result of two-way ANOVA, there was no significant difference in shear bonding strength between zirconia types (P > .05), but there was a significant correlation in the sandblasting, primer, and alumina sandblasting & primer group (P < .05). Dunnett T3 post-test showed that, regardless of the type of zirconia, shear bonding strength was sandblasting & primer > Primer > sandblasting > control group (P < .05). Conclusion. There was no difference in shear bond strength between the types of zirconia. The highest shear bond strength was shown when the mechanical and chemical treatments of the zirconia surface was performed simultaneously.